
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Probabilistic Programming with Programmable

Divide-Conquer-Combine Inference on Modern Hardware

MARKUS BÖCK, TU Wien, Austria
JÜRGEN CITO, TU Wien, Austria

Universal probabilistic programming languages (PPLs) enable the specification of models with stochastic
support structure. Posterior inference is notoriously hard and remains difficult to accelerate on modern
hardware for this class of models. In response to these challenges, we introduce Upix – the first probabilistic
programming system that realises the divide-conquer-combine (DCC) inference algorithm as a framework.
In Upix, a model expressed in a universal PPL is automatically split into multiple sub-models with static
support structure, which are then compiled with JAX for execution on accelerator hardware. The system
allows extensive customisation of inference algorithms by incorporating numerous established concepts from
programmable inference. To evaluate our system, we implemented two existing DCC algorithms in Upix and
instantiated three novel algorithms. We show that our implementation achieves better approximation quality
compared to existing approaches by achieving between 7 and 720 times more computation within the same
time budget. On machines with up to 64 CPU cores and 8 GPU devices, we demonstrated that Upix enables
the scaling of inference algorithms to workloads that are impractically slow for CPUs and prior methods.

CCS Concepts: •Mathematics of computing→ Bayesian computation; Statistical software; • Software
and its engineering→ Just-in-time compilers.

Additional Key Words and Phrases: probabilistic programming, stochastic support, divide-conquer-combine,
programmable inference, GPU-acceleration

1 Introduction

Probabilistic programming languages (PPLs) enable the specification of probabilistic models as
programs and automate Bayesian inference. In their implementations, they have to trade off
expressivity and inference efficiency.
On one side, there are PPLs like PyMC [48] or Stan [8] which restrict the class of programs

to models with fixed and finite support structure. This allows efficient model representation and
optimised implementations of inference algorithms like HMC [5], ADVI [23], or NUTS [20]. Even
more, some probabilistic systems in this category like TensorflowProbability [24], BlackJAX [7], or
NumPyro [41] build on the JAX numerical computing library to run inference on CPUs, GPUs, and
TPUs via just-in-time (JIT) compilation.

On the other side, there are so-called universal PPLs like Gen [12], Turing [14], or Anglican [50],
which embed their probabilistic constructs in a Turing-complete programming language. To support
this large class of models they have to rely on general-purpose inference algorithms which often
can be inefficient. To overcome this problem, these PPLs typically allow the user to customise the
inference algorithms for the specific model at hand. This type of customisation, which came to be
known as programmable inference, is actively researched and developed [4, 11, 12, 25, 30].

Universal PPLs gained popularity and research interest, because models with stochastic support
structure can be easily expressed in them. Such models include mixture models with an unknown
number of components [40, 44], kernel and program induction models [46, 47], "open-universe"
models [33, 54], statistical phylogenetics models [45], models based on physical simulations [3],
and many Bayesian non-parametric models [18, 28, 52].

However, to the best of our knowledge, there exists no system that 1) makes it easy to parallelise
inference on GPUs or TPUs, 2) enables the specification of models in a universal PPL, and 3)

Authors’ Contact Information: Markus Böck, markus.h.boeck@tuwien.ac.at, TU Wien, Vienna, Austria; Jürgen Cito, juergen.
cito@tuwien.ac.at, TU Wien, Vienna, Austria.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Böck and Cito

implements a programmable inference machinery. In this work, we propose to bridge this gap by
building a system following the divide-conquer-combine (DCC) approach introduced in 2020 by
Zhou et al. [55].
Conceptionally, the DCC approach is rather simple: In the divide step, a model specified in a

universal PPL is split up into multiple sub-models with fixed and finite support structure. In the
conquer step, inference is performed on the sub-models by leveraging optimised algorithms. Lastly,
in the combine step, all results are combined in an unbiased way to approximate the posterior
distribution of the full model. However, in practice, each step comes with challenges:
• Divide. It is difficult to automatically split up a probabilistic program into sub-models.
Existing approaches either rely on user-annotation or consider only the simpler case in
which the program is split up by conditioning on the values of discrete variables.
• Conquer. The derived sub-models may still pose challenging inference problem rendering
black-box approaches infeasible.
• Combine. To combine the results, we have to weigh the inference result of each sub-

model proportional to its contribution to the full posterior. This amounts to computing the
normalisation constant accurately for each sub-model – a notoriously difficult problem.

This work. We present Upix – a probabilistic programming system, which solves the above chal-
lenges by implementing the DCC approach for a universal PPL as a framework with programmable
inference in JAX: In short, a JAX program transformation was developed to split up the probabilistic
programs into sub-models automatically. Next, the system provides constructs to customise both
the inference routine and the normalisation constant computation for each sub-model making the
conquer and divide step fully programmable. Further, as a product of implementing the system in
JAX, inference in Upix can greatly leverage vectorisation on CPUs, GPUs, and TPUs, as well as par-
allelisation across multiple devices. Lastly, through its abstractions Upix enables the development
of new DCC-based inference algorithms.

Contributions. This paper contributes:
• Upix [1] – the first probabilistic programming system that realises the DCC approach as
a framework and implements a programmable inference machinery to run inference on
CPUs, GPUs, or TPUs for models specified in a universal PPL.
• Five instantiations of the framework yielding three novel DCC-based algorithms (two have

been adapted from prior work): a Markov chainMonte Carlo approach as in the original DCC
publication [55], Support Decomposition Variational Inference (SDVI) [42], a Reversible
Jump / Involutive MCMC inspired approach, a Sequential Monte Carlo based approach, and
a Variable Elimination based approach for discrete models.
• An empirical evaluation which compares Upix to existing work on challenging models
showing that Upix achieves 7 to 720 more computation within the same time budget on
consumer-grade CPUs, which substantially improves approximation quality.
• An investigation of the scaling properties of Upix on modern hardware (up to 64 CPU cores
and 8 GPU devices), demonstrating that inference algorithms can be scaled to workloads
that are impractically slow for CPUs and existing approaches.

2 Overview

Probabilistic programming languages (PPLs) are equipped with constructs for declaring random
variables and conditioning on observed data. In this work, we focus on universal PPLswhich are PPLs
embedded in a Turing-complete language that support stochastic control flow and recursion [15].
In particular, we consider a language that allows the user to declare a random variable by linking a

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 3

dynamically computed label – the address – to a dynamically computed distribution in a sample
statement. Conditioning of the model is achieved by fixing the values of selected addresses to
observed data.

In Figure 1 on the left, we show how the mixture model

𝐵 ∼ Bernoulli(0.5), 𝑧 ∼
{
Normal(−3, 1) if 𝐵 = 1,
Uniform(1, 4) otherwise.

, 𝑦 ∼ Normal(𝑧, 2)

may be implemented with stochastic branching in a universal PPL.

def disc_mixture ():

B = sample("B",Bernoulli (0.5),

branching = True)

if B == 1:

z = sample("z",Normal (-3,1))

else:

z = sample("z",Uniform (1,4))

sample("y",Normal(z,2), observed =2)

def model2 ():

U = sample("U",Uniform (0,1))

if U > 0.5:

z = sample("z1" ,Normal (-3,1))

else:

z = sample("z2" ,Uniform (1,4))

sample("y",Normal(z,2), observed =2)

Fig. 1. Two mixture models implemented in a universal PPL with stochastic branching. We highlight the

annotations required by prior DCC implementations to identify SLPs in yellow .

In this work, the domain of probabilistic programs is defined with traces – mappings from
addresses of random variables to their values. We interpret a probabilistic program as a function 𝑝
mapping traces to their probability density. The function 𝑝 is only well-defined for traces that are
compatible with executions of the program. The support of a probabilistic program is the set of
traces which map to a positive density. For instance, for the considered mixture model, we have
𝑝 ({B ↦→ 0, z ↦→ 2.3}) = pdfBernoulli(0.5) (0) · pdfUniform(1.4) (2.3) · pdfNormal(2.3,2) (2) ≈ 0.0329.

The great expressivity of universal PPLs comes at the cost of making automated inference more
challenging. The Divide-Conquer-Combine (DCC) approach [55] proposes to solve this problem by
splitting up the model support, given by a set of traces T , into an (typically) infinite number of
disjoint subsets T𝑘 such that the support structure on T𝑘 is static and finite dimensional (essentially
isomorphic to some R𝑛 measurable space). This divide step splits the model into multiple sub-
models 𝑝𝑘 (tr) = [tr ∈ T𝑘] · 𝑝 (tr) such that 𝑝 (tr) = ∑

𝑘 𝑝𝑘 (tr). In the context of probabilistic
programming, these sub-models are referred to as straight-line programs (SLPs) as they are free
from universal language features like stochastic control flow and recursion.
For the example mixture model, the two disjoint sub-models 𝑝1 (tr) = [tr(B) = 1] · 𝑝 (tr) and

𝑝2 (tr) = [tr(B) ≠ 1] · 𝑝 (tr) are given by the SLPs below, which return the log-density along with
a boolean value indicating whether the trace belongs to the sub-model.

def disc_mixture_SLP1(tr):

lp = 0.0

lp += Bernoulli (0.5). log_prob(tr["B"])

lp += Normal (-3,1)). log_prob(tr["z"])

lp += Normal(z,2). log_prob (2)

return lp , B == 1

def disc_mixture_SLP2(tr):

lp = 0.0

lp += Bernoulli (0.5). log_prob(tr["B"])

lp += Uniform (1,4). log_prob(tr["z"])

lp += Normal(z,2). log_prob (2)

return lp, B != 1

It is desirable for systems implementing the DCC approach to be capable of automatically finding
and compiling the associated SLP functions. However, the only existing implementations [42, 55]
rely on user-annotations to mark discrete branching variables or require the model to be rewritten

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Böck and Cito

such that the set of sample addresses encountered in a program run uniquely identifies the SLPs
when branching depends on continuous variables, see Figure 1. By building Upix on JAX [13], a
tracing just-in-time (JIT) compiler for Python, we are able to fully automate SLP generation without
user-annotation, see Section 3.3.

def gmm(ys: jax.Array):

N = ys.shape [0]

K = sample("K",Poisson(lam -1)) + 1 # influences the shape of w, mus , and vars

w = sample("w",Dirichlet(jnp.full((K,),delta)))

mus = sample("mus",Normal(jnp.full((K,),xi),jnp.full((K,),1/jnp.sqrt(kappa))))

vars = sample("vars",InverseGamma(jnp.full((K,),alpha),jnp.full((K,), beta)))

zs = sample("zs",Categorical(jax.lax.broadcast(w,(N,))))

sample("ys", Normal(mus[zs],jnp.sqrt(vars[zs])), observed=ys)

Fig. 2. Gaussian Mixture Model implemented in Upix making use of dynamic array shapes.

Furthermore, we consider a previously unrecognised source for stochastic model support in
probabilistic programming. To illustrate, we show a Gaussian Mixture Model (GMM) with an
unknown number of components K in Figure 2. In this program, the shapes of the arrays passed as
arguments to the distribution objects of w, mus, and vars are dynamically determined by the value
of K, thereby inducing a stochastic support whose structure varies with K. Our JAX implementation
is able to identify the SLPs fully automatically even in this case . In contrast, prior implementations
require the annotation of K with branching=True or modifiying the addresses, e.g. "w"+str(K).
The GMM also demonstrates the benefits and challenges of the conquer and combine steps

of DCC. In the conquer step, efficient inference algorithms for the static and finite dimensional
sub-models are used to approximate 𝑝𝑘 ≈ 𝑝𝑘 = [tr(K = 𝑘)] · 𝑝 (tr). While easier than inference for
the full model, inference for the sub-models is already challenging and black-box approaches as
realised in existing DCC implementations perform poorly for complex models. Instead, we propose
to use established programmable inference constructs [4, 11, 12, 25] for these sub-problems. For
instance, for the GMM, an MCMC approach based on well-known Gibbs kernels [44] can be readily
programmed as proposal distributions for a Metropolis-Hastings algorithm. Notably, these Gibbs
kernels only exist for the finite sub-models with fixed K, not for the full model.
A drawback of splitting the model into multiple sub-problems is the need to allocate compu-

tational resources effectively among high-probability SLPs. While Zhou et al. [55] and Reichelt
et al. [42] have proposed general resource allocation techniques for DCC, we leave room in Upix to
customise resource allocation programmatically.

Finally, in the combine step of DCC, the estimates of the sub-models have to be combined in an un-
biasedmanner with 𝑝 ≈ ∑

𝑘 𝑤𝑘𝑝𝑘 . In the original formulation of DCC, the weight𝑤𝑘 = 𝑍𝑘/
∑
𝑗 𝑍 𝑗 for

𝑝𝑘 is computed by estimating the normalisation constants or marginal likelihood 𝑍𝑘 =
∫
T𝑘 𝑝 (tr)𝑑tr

with a variant of importance sampling. Unfortunately, this integral becomes very challenging
for complex models, and we found that general-purpose estimation techniques like importance
sampling are insufficient. Again, we propose to customise this estimation programmatically in Upix
for which we provide programmable inference constructs. For instance, as we will elaborate in
Section 4.3, we compute the SLP weight𝑤𝑘 for the GMM by implementing a reversible-jump kernel
that allows us to estimate the probability of "switching" between sub-models in the full posterior.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 5

3 The Upix System

3.1 Language

Upix allows the specification of probabilistic models in a universal PPL embedded in Python. Our
syntax is adapted from Pyro, with sample statements invoking the abstract function
def sample(address:str , distribution:Distribution , [observed:Array]) -> Array

where address is a unique identifier for a random variable that is distributed according to argu-
ment distribution , and the observed argument is optional for incorporating observed data. A
model is given by a Python function annotated with the decorator @model and includes sample
statements mixed with arbitrary Python code that modifies JAX arrays. Importantly, Python control
flow, like if statements and while loops, and array shapes that depend on concrete JAX array
values are allowed. Normally, this is disallowed when JIT-compiling a JAX function and leads to a
ConcretizationTypeError , because array shapes have to be statically known in compilation. For
this reason, NumPyro, the JAX implementation of Pyro, also disallows these language features and
only supports models with fixed and finite structure.1 In Section 3.3, we describe how we enable
these language constructs with our custom JAX interpreter.

3.2 Abstract Divide-Conquer-Combine

At the highest level, we developed a novel abstraction of the DCC approach shown in Listing 1.
The initialise_active_slps and update_active_slps methods implement the divide step. The
former finds SLPs (sub-models) in the initialisation phase and in the update phase the latter retains
promising SLPs while discarding less promising SLPs based on the results collected so far. New
SLPs may also be instantiated and made active in the update phase. The run_inference method
implements the conquer step and performs inference for all active SLPs and stores the result. The
estimate_log_weight is responsible for computing the contribution weight of the SLP posterior to
the full model posterior. Together with the combine method the combine step of DCC is implemented.
In this last step, all results are aggregated with respect to the estimated contribution weights. In
Section 4, we will instantiate this abstract routine based on several Bayesian inference approaches
to implement existing DCC methods and to formulate novel DCC algorithms.

Listing 1. The divide-conquer-combine approach as abstracted in Upix.

1 class DCC:

2 def run(self , model):

3 active_slps , inactive_slps , results = [], [], []

4 self.initialise_active_slps(model , active_slps , inactive_slps)

5 while len(active_slps) > 0:

6 for slp in active_slps:

7 self.run_inference(slp , results)

8 self.estimate_log_weight(slp , results)

9 self.update_active_slps(model , results , active_slps , inactive_slps)

10 return self.combine(results)

3.3 Compiling SLPs

Building on JAX enables us to formulate a simple program transformation that, for the first time,
automatically identifies and compiles straight-line programs (SLPs) from a probabilistic program.
Thus, without the need for annotations, we allow programs to contain control flow that depends
on random variables and allow programs to contain distribution objects whose support structure
1Note that Reichelt contributed a rudimentary implementation of DCC [55] and SDVI [42] to NumPyro which relies on user
annotations for discrete branching variables.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Böck and Cito

depends on other random variables. First, we transform a model definition according to standard
density-based semantics, where sample method calls are replaced with

value = observed if observed is not None else tr[address]

lp += distribution.log_prob(value)

return value

where tr:Dict[str ,Array] is our trace data structure whose values are injected at the cor-
responding addresses if there is no observed data. In addition, we accumulate the probability
density in log-space with the variable lp. The decorator @model transforms a Python function
def f(args:S) -> T to model(f): S -> (Dict[str ,Array] -> (Float ,T)) by replacing sample
statements as described above and adding the trace input argument. That is, model(f)(args)(tr)
runs the program with respect to input trace tr and outputs the return value together with its
probability density. Typically, the arguments to a probabilistic model args:S pass hyper-parameters
or observed data and are constant throughout inference. Further, the posterior distribution over
the latent random variables is of more interest than the distribution of some return value. For these
reasons, we often omit arguments and return values in model definitions in the rest of the paper to
ease presentation, but they are supported in Upix.

Note that model(f)(args) cannot be JIT-compiled in general as this function may contain control
flow and array shapes that depend on tr. Transforming the function into multiple straight-line pro-
grams by constraining the branching and shape decisions both allows us to split the underling prob-
abilistic model into multiple sub-models with disjoint support as required by DCC and allows us to
JIT-compile the SLPs. We achieve this with a tracing-based program transformation, which takes ar-
bitrary functions def g(args:S) -> T and produces trace_decisions(g): S -> (T,Bool). This
transformation is implemented as a custom JAX interpreter that executes the program with the
input arguments args, circumvents ConcretizationTypeErrors by making branching and shape
decisions according to the concrete values of args, and traces all encountered array operations
for subsequent compilation. Thus, a JIT-compilation of trace_decisions(g) with respect to args

produces a straight-line program where control flow and array shapes are fixed by args even if
the executable is invoked with inputs that would result in different control flow or array shapes
in g. To keep track of this mismatch, the transformation also adds a boolean return value which

@model

def simple ():

U = sample("U",Uniform (0,1))

if U > 0.5:

N = 1

else:

N = sample("N",Poisson (3))

for i in range(N):

sample(f"x_{i}",

Normal(zeros((N,)),1,))

def SLP1(tr):

lp = 0

lp += Uniform (0,1). log_prob(tr["U"])

lp += Normal ([0] ,1)). log_prob(tr["x_0"])

return lp, (tr["U"] > 0.5)

def SLP2(tr):

lp = 0

lp += Uniform (0,1). log_prob(tr["U"])

lp += Poisson (3). log_prob(tr["N"])

lp += Normal ([0,0,0],1). log_prob(tr["x_0"])

lp += Normal ([0,0,0],1). log_prob(tr["x_1"])

lp += Normal ([0,0,0],1). log_prob(tr["x_2"])

return lp, (tr["U"] <= 0.5) and (tr["N"] == 3)

Fig. 3. SLP generation process exemplified: Left: a probabilistic model defined in Upix that exhibits stochastic

support. Right: Two example straight-line programs which are equivalent to programs obtained with the JAX

transformations described in Section 3.3.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 7

indicates whether or not the input matches the decisions of the original args. We call args the
decision representative of the transformed program.

In the context of DCC, we have g = model(f)(model_args): Dict[str ,Array] -> Float and
a trace tr:Dict[str ,Array] is the decision representative of an SLP. The compiled function
trace_decisions(g) returns the log-probability density of the sub-model encoded by the SLP and
a boolean value b which is true if the input trace would result in the same SLP as the decision
representative trace tr that the function was compiled with respect to. Thus, the input trace lies
in the support of the sub-model if and only if (lp > -inf) and b. In Figure 3, we illustrated this
process by giving two example SLP generations for a model which exhibits stochastic support.
Note that the branching condition, the set of executed sample statements, and the dimensionality
of the random variables with addresses f"{x_i}" depend on the input traces. Unlike existing
implementations of DCC, our program transformation automatically compiles SLPs without the
need to annotate that the support structure depends on U and N.

Note that the described JAX transformations were implemented to be compatible with other JAX
transformations. This means that, for instance, we can use jax.vmap to vectorise the log-probability
density computation or jax.grad to differentiate the log-probability density with respect to the
trace. Both of these transformations enable an efficient implemention of gradient-based inference
algorithms like HMC [5] or ADVI [23].

3.4 Programmable Inference

In principle, every step of DCC is customisable in Upix. We provide several instantiations of the
framework for themost popular inference algorithms includingMarkov chainMonte Carlo (MCMC),
sequential Monte Carlo (SMC), and Variational Inference (VI) algorithms. These instantiations
are organised hierarchically as shown in Figure 4 and provide default implementations of the
individual steps of DCC as well as convenience constructors to ease programmable inference based
on established principles [6, 12, 25, 38]. In Section 4, we will describe these instantiations in detail.

AbstractDCC MonteCarlo → DCC MarkovChainMonteCarlo → DCC ReversibleJumpMCMC → DCC
SequentialMonteCarlo → DCC

VariationalInference → DCC SDVI

Exact → DCC VariableElimination → DCC

Fig. 4. Hierarchical organisation of the instantiations of DCC algorithms in Upix.

Unlike existing universal probabilistic programming systems which allow the user to customise
inference only for the full model, Upix enables the user to customise inference for each sub-model
encoded by an SLP. Crucially, at the SLP level, the trace data structure tr:Dict[str ,Array] has
fixed array shapes which allows the compilation of the associated (log-)probability density function,
as discussed in Section 3.3. This enables us to also compile and execute full inference routines
programmed for each SLP with the provided convenience constructors and run them on CPUs,
GPUs, or TPUs.
Furthermore, note that at the SLP level, the log-probability density function can be "flattened"

to the form log_p: Array -> Float by concatenating the values of the input trace in fixed order.
Mathematically, the log-probability density function of an SLP is a function R𝑛 → R with fixed
domain dimension𝑛. Most of the inference algorithms implemented in Upix, which form the building
blocks of the programmable inference constructs, are implemented based solely on a JAX-compiled
log-probability density function. This opens up opportunities for interoperability with existing
inference systems. For instance, BlackJAX [7] is a Bayesian inference framework built around the

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Böck and Cito

log-probability density. But also parts of the inference machinery of TensorflowProbability [24] or
NumPyro [41] could be integrated in Upix as new building blocks for programmable inference.

Lastly, while we provide default implementations for the initialise_active_slps method and
for the update_active_slps method, it is generally beneficial to adapt them to the model at hand.
We give examples in Section 4. Effectively, this gives rise to a two-layer approach to programmable
inference. First, inference routines may be customised at the SLP level in the conquer step as
described. Second, on the meta-inference level, users may customise how the space of SLPs is
explored and how computational resources are allocated to them.

3.5 Parallelisation

The DCC approach together with JAX compilation allow for many opportunities to parallelise
inference across computational devices.

First, Upix implements parallelisation techniques for the inference run and the estimation of the
weight of a each SLP. In this parallelisation approach, computations are scheduled sequentially in
lines 6-8 of Listing 1.

Vectorisation. The vectorisation transform of JAX called jax.vmap was used to implement infer-
ence machinery as numerical computations on multi-dimensional arrays. Such computations can
be efficiently run on accelerator hardware designed for single-instruction multiple-data (SIMD)
use cases like GPUs and TPUs. This parallelisation technique is recommended for machines with a
single GPU.

Sharded Arrays. On top of vectorisation, JAX allows the distribution of computations on multi-
dimensional arrays among several accelerators with jax.pmap and jax.shard_map . Thus, we can
run inference and weight estimation for each SLP onmultiple GPUs and TPUs. This is recommended
for inference and weight estimation workloads which are embarrassingly parallel. In Section 5, we
use this technique to scale MCMC to thousands of chains, VI to thousands of gradient estimates
per step, and SMC to thousands of particles.

Second, Upix implements parallelisation techniques to run inference and weight estimation for
multiple SLPs at the same time.

Multiple accelerator devices. If the inference and weight estimation workloads are not embar-
rassingly parallel, we may distribute the full workloads among GPUs and TPUs which work
independently in a multi-processing fashion.

Multiple CPU cores. By default, JAX does not allow one to dispatch multiple computations to
specific CPU cores in parallel. As some users of Upix may not have access to machines with multiple
accelerators, we decided to implement a workaround to run inference and weight estimation of
multiple SLPs with multi-processing. To achieve this, we launch multiple JAX processes pinned to
single CPU cores and send them workloads via the serialisation functionality built into JAX.

4 DCC Algorithms Instantiated with Upix

4.1 Markov Chain Monte Carlo DCC

As the first application of Upix, we adapt the DCC algorithm of Zhou et al. [55], which is built
around MCMC inference. MCMC algorithms build a chain of samples 𝑥𝑖 which are perturbed by a
kernel 𝑥𝑖+1 ∼ 𝑘 (.|𝑥𝑖) which leaves the posterior distribution invariant. This property implies that
with a sufficiently long chain, a sample from the posterior distribution is approximated. Such kernels
can be constructed even if the posterior density function is only known up to a multiplicative

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 9

constant, e.g. if the joint probability density over latent and observed variables can be computed.
Notable examples are the Metropolis-Hastings [34], the HMC [5], or the NUTS kernel [20].
The MCMC DCC algorithm is implemented in Upix as sketched in Listing 2. It is realised as a

sub-class of MonteCarloDCC our abstract implementation of DCC which approximates the posterior
with a weighted set of traces. The initialisation of active SLPs is done by sampling a trace from the
model prior and checking if the trace is not in the support of any SLP found so far. As proposed by
Zhou et al. [55], active SLPs are updated by running a global random walk Metropolis-Hastings
algorithm on the full model, where traces may change with respect to their set of addresses and array
shapes. For this reason, this global algorithm cannot be JIT-compiled and serves solely for updating
the set of active SLPs. In the MarkovChainMonteCarloDCC class the normalisation constant of an
SLP is estimated via importance sampling as in Zhou et al. [55]. To ease programmable inference
for MCMC-based DCC, we provide convenience constructs adapted from prior work [12, 14] to
define MCMC kernels for each SLP in the get_MCMC_inference_regime method, which are then
used in the MCMC routine launched in the run_inference method.

Listing 2. Implementation sketch of Markov Chain Monte Carlo DCC in Upix.

class MonteCarloDCC(AbstractDCC):

def initialise_active_slps(self , model , active_slps , inactive_slps):

draw traces from prior

def update_active_slps(self , model , results , active_slps , inactive_slps):

global random walk updates

def combine(self , results):

combine inference results as set of weighted traces

class MarkovChainMonteCarloDCC(MonteCarloDCC):

def estimate_log_weight(self , slp , results):

estimate log -weight with importance sampling

def get_MCMC_inference_regime(self , slp):

provided by the user

def run_inference(self , slp , results):

run MCMC routine based on self.get_MCMC_inference_regime(slp)

Our programmable inference approach to MCMC-based DCC is best illustrated with an example.
Mak et al. [28] introduced the Pedestrian model shown in Figure 5 to motivate NP-DHMC their
novel non-parametric variant of discontinuous HMC [39] which can handle both discontinuities in
the density function and stochastic support. The Pedestrian model is challenging, because the while
loop condition and the observation depend on all random variables sampled so far. In the spirit
of DCC, we approximate the posterior of this model by running discontinuous HMC individually
for each SLP and combine the results later. Upix automatically splits up this program into SLP𝑘 ,
𝑘 ∈ N \ {0}, where SLP𝑘 is the program that executes the while loop for 𝑘 iterations.

On the right in Figure 5, we show how users may customise MCMC kernels for the Pedestrian
model with the provided constructs. They can choose from a set of inference algorithms like
Metropolis-Hastings MH or discontinuous HMC DHMC, customise the proposal distributions and
hyper-parameters, and apply them to a subset of variables which may be specified with regular
expressions.

To compare our approach, we ran the NP-DHMC PyTorch implementation of Mak et al. [28] with
8 chains of 1 000 samples configured with their best scoring hyper-parameter values: 50 HMC steps
with step-size 0.1. Running each chain in multiple processes in parallel takes 121 seconds on a 10
core M2 Pro machine. In less than 25 seconds (our reported runtimes always include JAX compile

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Böck and Cito

@model

def pedestrian ():

position = sample("start",Uniform (0,3))

distance = 0.

t = 0

while (position > 0) & (distance < 10):

t += 1

step = sample(f"step_{t}",Uniform (-1,1))

position += step

distance += jax.lax.abs(step)

sample("obs",

Normal(distance ,0.1), observed =1.1)

regime = MCMCSteps(

MCMCStep(

Variables("start"),

MH(lambda _: Uniform (0,3))

),

MCMCStep(

Variables(r"step_\d+"),

DHMC (50 ,0.05 ,0.15)

)

)

Fig. 5. Left: Pedestrian model [28] in Upix. Right: MCMC routine specified with provided constructs.

time), we can run 8 chains of 25 000 samples in Upix-MCMC-DCC with the same configuration
for DHMC. This runs inference and combines results for SLP1 to SLP6. It was determined that all
other SLPs do not contribute enough to the posterior to warrant an inference run. For this, we
customised initialise_active_slps to iterate over the SLPs ordered by number of steps and stop
adding SLP𝑘 to active_slps once the normalisation constant of SLP𝑘 is estimated to be a factor of
103 smaller than the highest weighted SLP seen so far.

Thus, with inference routines JIT-compiled for each SLP we are able to take 720 times more
samples per second than the NP-DHMC algorithm which has to move between SLPs in a non-
compiled program. At this point, we emphasise that the implementation of Mak et al. [28] was
not optimised for speed. Nevertheless, in Figure 6 we show the qualitative difference between
the achieved approximations to the true posterior. The approximation quality is quantified with
𝐿∞ (𝐹, 𝐹) = max𝑥 |𝐹 (𝑥) − 𝐹 (𝑥) |, where 𝐹 is the ground truth posterior cumulative distribution
function over the "start" variable 𝑥 estimated with 1012 importance samples and 𝐹 is the approxi-
mation obtained with the MCMC approaches. NP-DHMC achieves 𝐿∞ ≈ 0.02372 while our Upix
implementation achieves 𝐿∞ ≈ 0.00133.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

ground truth
NP-DHMC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

ground truth
MCMC-DCC

Fig. 6. Approximations to the true posterior of the Pedestrian model (estimated with 1012 importance samples)

with 8 · 1 000 samples from NP-DHMC versus 6 · 8 · 25 000 samples from MCMC-DCC as 100 bin histograms.

4.2 Variational Inference DCC: SDVI

In Variational Inference the posterior distribution is approximated by optimising the parameters𝜙 of
a variational distribution𝑞𝜙 to minimise the Kullback–Leibler divergence to the posterior. In practice,
the so-called evidence-lower-bound (ELBO)L(𝜙) = E𝑧∼𝑞𝜙

[
log 𝑝 (𝑧) − log𝑞𝜙 (𝑧)

]
is maximisedwhich

constitutes an equivalent but more practical optimisation objective. This optimisation is achieved

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 11

via gradient ascent and typically implemented on top of automatic differentiation machinery in
probabilistic programming systems. In this case, the approach is called Automatic Differentiation
Variational Inference (ADVI) [23].

Reichelt et al. [42] proved that when we fit a local variational distribution 𝑞𝑘
𝜙𝑘

to the posterior of
each individual sub-model encoded by an SLP, then the mixture of the local variational distributions,
where each 𝑞𝑘

𝜙𝑘
is weighted proportional to their local ELBO, 𝑤𝑘 ∝ exp(L𝑘 (𝜙𝑘)), is the optimal

approximation to the full model. This enabled their variational inference based DCC approach.
This approach is implemented in Upix as sketched in Listing 3. To ease programmable inference

we allow the user to specify a variational distribution as a so-called guide program following Pyro’s
approach [6]. A guide program in Upix is a Python function made up from sample statements
sample (...) and parameter declarations param (...) . The distributions in sample statements are
parameterised with respect to the declared parameters and we can compute the ELBO gradient via
JAX’s automated differentiation machinery. In addition, we also make auto-guides available to the
user that approximate the posterior with a parameterised multivariate Gaussian distribution.

Listing 3. Implementation sketch of Variational Inference DCC and SDVI in Upix.

class VariationalInferenceDCC(AbstractDCC):

def initialise_active_slps(self , model , active_slps , inactive_slps):

draw traces from prior

def get_guide(self , slp):

provided by the user

def run_inference(self , slp , results):

run ADVI routine based on self.get_guide(slp)

def estimate_log_weight(self , slp , results):

estimate log -weight with local ELBO

def combine(self , results):

combine inference results as a mixture of variational distributions

class SDVI(VariationalInferenceDCC):

def update_active_slps(self , model , results , active_slps , inactive_slps):

use SuccessiveHalving strategy by Reichelt et al. 2022

Reichelt et al. [42] also proposed a Successive Halving strategy to allocate computational resources
to the most promising SLPs. In this strategy, a fixed computational budget is divided among SLPs for
a number of phases. After each phase, half of the SLPs are discarded, while the other half is optimised
with double the number of ADVI iterations. Their full method is called Support Decomposition
Variational Inference (SDVI) which we also implemented in Upix via the update_active_slps

method, see Listing 3.
We compare the runtime of their Pyro implementation of SDVI against our implementation in

Upix.2 As a benchmark, we implement a probabilistic program to infer the kernel structure of a
Gaussian Process model for airline passenger data. The kernel structure is given by the probabilistic
context-free grammar K ::= SE|RQ|PER|LIN|K + K|K × K, where we consider the squared-exponential,
rational-quadratic, periodic, and linear primitive kernels. This model exhibits stochastic support as
the number of base kernels is not fixed and unbounded. We have a unique SLP for each possible
kernel structure. The prior over the kernel grammar is implemented as a recursive Python function.
Like Reichel et al., we also use an auto-guide for each SLP. Implementation details can be found in
the replication package [1].
2Note that Reichelt also contributed a NumPyro version of SDVI, which presumably would run faster. However, this
implementation is rudimentary and does not fully replicate their SDVI approach [42].

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Böck and Cito

The Pyro version with 10 parallel processes takes 18 minutes and 20 seconds on a M2 Pro to run
ADVI on initially 110 random SLPs reduced to the 10 best SLPs over 5 phases with a budget of 106
total ADVI steps. Our equivalent Upix implementation takes only 2 minutes and 24 seconds to
go from 98 random SLPs to the 10 best, again over 5 phases. Here, we use the Mutliple CPU cores
parallelisation strategy with 10 parallel JAX processes, see Section 3.5. As computing a ground
truth posterior for the Gaussian process model is infeasible, we cannot compare the approximation
quality of both approaches. However, as we reproduced the implementation of SDVI in Upix exactly,
a runtime comparison between the approaches is sufficient.

4.3 Reversible Jump / Involutive MCMC DCC

Reversible Jump MCMC (RJMCMC) algorithms [17], which belong to the class of involutive MCMC
algorithms [38], were developed for models that can be decomposed into enumerable sub-models of
varying dimension. Metropolis-Hastings moves are designed to switch between these sub-models
during inference. As suggested by the name, these jumps have to be designed in a reversible manner:
for each jump move there has to be a move which reverses it, establishing a bijection. In this section,
we describe our novel DCC algorithm based on the RJMCMC principle.

This approach is best explained by example. In one of the earliest formulations Richardson and
Green [44] designed reversible jumps for a Gaussian mixture model (GMM) with unknown number
of components. Mathematically, we model the number of components 𝐾 ∼ Poisson(2) + 1 and the
membership probability as𝑤 ∼ Dirichlet(𝛿). Data is modelled with 𝑧𝑖 ∼ Categorical(𝑤) and
𝑥𝑖 ∼ Normal(𝜇𝑧𝑖 , 𝜎2𝑧𝑖), where 𝜇𝑘 ∼ Normal(0, 𝜅−2) and 𝜎𝑘 ∼ InverseGamma(𝛼, 𝛽) are the center and
deviation around the center for component 𝑘 . We have implemented this model in Upix as shown
in Figure 2. For this model, the jumps are given by 1) splitting one component into two components
and 2) merging two components to one component. These jumps are designed to be inverses of each
another on an extended variable space. The RJMCMC inference algorithm for the GMM alternates
between the reversible jumps, changing the number of components, and well-known Gibbs moves
to draw samples from the posterior of each sub-model. These Gibbs moves are readily implemented
with the MCMC programmable inference constructs provided by Upix.

At first, we implemented inference for the GMM following theMCMC-DCC approach as described
in Section 4.1 which eliminates the need to jump between sub-models as every SLP corresponds to
a sub-model with a certain fixed number of components. However, we were not able to accurately
estimate the normalisation constants needed to combine the results with importance sampling
methods as proposed by Zhou et al. [55] or with other common approaches for marginal likelihood
estimation like Chib’s method or sequential Monte Carlo methods [26].

Subsequently, we realised that for the combine step to be sound in DCC, the absolute normalisa-
tion constants of each SLP are not required. Instead, it is sufficient to weigh an SLP only relative to
the other SLPs. Even more, this relative estimation can be built around reversible jumps. To see
this, letD be the observed data and let 𝑝 (.|𝑖,D) denote the 𝑑𝑖 dimensional posterior of sub-model 𝑖
and 𝑘 (𝑗, 𝑦 |𝑖, 𝑥) a reversible jump kernel that moves from sub-model 𝑖 to sub-model 𝑗 . We observe
following relationship between normalisation constants 𝑝 (𝑖 |D) and 𝑝 (𝑗 |D):

𝑍 𝑗←𝑖 :=
∫
R𝑑𝑗

∫
R𝑑𝑖

𝑘 (𝑗, 𝑦 |𝑖, 𝑥) 𝑝 (𝑥 |𝑖,D) 𝑑𝑥𝑑𝑦 =

=
1

𝑝 (𝑖 |D)
∫
R𝑑𝑗

∫
R𝑑𝑖

𝑘 (𝑗, 𝑦 |𝑖, 𝑥) 𝑝 (𝑖, 𝑥 |D) 𝑑𝑥𝑑𝑦 =

=
1

𝑝 (𝑖 |D)
∫
R𝑑𝑖

∫
R𝑑𝑗

𝑘 (𝑖, 𝑥 | 𝑗, 𝑦) 𝑝 (𝑗, 𝑦 |D) 𝑑𝑦𝑑𝑥 =
𝑝 (𝑗 |D)
𝑝 (𝑖 |D) 𝑍𝑖←𝑗

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 13

Above, the second to last equation follows from the fact that involutive MCMC kernels such as
RJMCMC kernels satisfy detailed balance [38]. This gives rise to an infinite system of equations

𝑍𝑖 = 𝑝 (𝑖 |D) = 𝑍 𝑗
𝑍𝑖←𝑗

𝑍 𝑗←𝑖
, 𝑖 ∈ N, 𝑗 ∈ N. (1)

This system can be approximated by only taking into account the SLPs for which inference was
performed in DCC. The system is under-determined, so we may arbitrarily set 𝑍0 = 1. The
quantities 𝑍 𝑗←𝑖 may be approximated through sampling as follows: First, take 𝑥 ∼ 𝑝 (.|𝑖,D), where
the posterior 𝑝 (.|𝑖,D) is approximated by running inference for SLP𝑖 . Then, we simulate reversible
jumps (𝑗, 𝑦) ∼ 𝑘 (.|𝑖, 𝑥) and take 𝑍 𝑗←𝑖 as the empirical marginal distribution over 𝑗 . Crucially, this
estimation can often be JIT-compiled as both SLP𝑖 and SLP𝑗 have static support structure.

To ease programmable inference, a language for declaring involutions and computing acceptance
rates of reversible jumps via automatic differentiation was implemented following Cusumano-
Towner et al. [11]. The estimate_log_weight method builds the system of equation (1) based on
the user-provided reversible jumps and solves it numerically to estimate the SLP weights.

To evaluate our approach, we compare against the described RJMCMC algorithm for the GMM
implemented in Gen adapted from Matheos et al. [33]. Running 8 MCMC chains of length 25 000 in
a multi-threaded fashion takes 95 seconds (with ≈ 13 seconds Julia JIT-compile time). This results
in an approximation to the posterior with error 𝐿∞ (𝐹, 𝐹) =max𝑘 |𝐹 (𝑘) − 𝐹 (𝑘) | ≈ 0.00759, where 𝐹
is the ground truth cumulative distribution function over the number of components estimated by
collecting a total of 107 samples and 𝐹 is the approximation obtained by the 8 · 25 000 samples. In
this run the highest number of components encountered was 9. Our approach takes 91 seconds
(≈ 47 seconds compile-time) to run 8 chains and 25 000 seconds for 11 SLPs corresponding to
component numbers 1 to 11. For this, we customised update_active_slps to run inference on
SLPs ordered by the compontent count and SLPk+1 is made active only if the split probability of
SLP𝑘 exceeds the threshold 0.01. In approximately the same time, Upix produces 10 times more
samples compared to Gen, which results in a better estimate 𝐿∞ (𝐹, 𝐹) ≈ 0.00401.

4.4 Sequential Monte Carlo DCC

Although the sequential Monte Carlo (SMC) [10] inference algorithm class can be quite naturally
instantiated as a DCC algorithm, to the best of our knowledge, we are the first to do so. Different
to MCMC and VI, SMC algorithms propagate a set of samples – so-called particles – once through
the probabilistic program. Observed data is added to the inference process iteratively. After each
addition of data, the particles are re-weighted relative to their likelihood. Then, particles may be
resampled according to their weights effectively discarding low-probability particles and duplicating
high-probability particles. Optionally, a rejuvenation MCMC kernel may be applied to all particles
after resampling to make them more diverse. At the end, the set of weighted particles constitutes
an approximation to the posterior distribution of the model. As a convenient by-product SMC
algorithms also provide an estimate of the marginal likelihood Z.
Thus, an SMC-DCC algorithm is implemented in Upix as sketched in Listing 4, where we re-

use the marginal likelihood estimate from the inference run in the combine step. We enable the
user to easily specify the schedule with which data is introduced to the inference process in the
get_SMC_data_schedule method. For instance, this could be one data point at a time or a batch of
data points at a time. To run SMC efficiently, many probabilistic programming systems implement
machinery to incrementally execute the program and add data this way. A similar approach in
Upix would lead to a lot of compilation overhead as the log-probability density function would
have to be compiled for every data increment. Instead, we decided to always execute the full
probabilistic program, but pass a mask as argument that determines which data points contribute

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Böck and Cito

to the log-probability density. This way the density computation has to be compiled only once per
SLP in SMC. In addition to making the data schedule programmable, we also provide the option to
specify a rejuvenation MCMC kernel with the same constructs as in Section 4.1. We also provide
many options to customise the resampling scheme in SMC like the resampling method (multinomial,
stratified, and systematic) and resampling time (before or after rejuvenation).

Listing 4. Implementation sketch of Sequential Monte Carlo DCC in Upix.

class SequentialMonteCarloDCC(MonteCarloDCC):

def get_SMC_data_schedule(self , slp):

provided by the user

def get_SMC_rejuvenation_regime(self , slp):

provided by the user

def run_inference(self , slp , results):

run SMC routine based on rejuvenation kernel and data schedule

def estimate_log_weight(self , slp , results):

estimate log -weight with estimate from SMC inference run

To test this approach, we again consider the Gaussian Process model from Section 4.2, but with
slighlty different kernel grammar K ::= GE|PER|LIN|K + K|K × K, where GE is a gamma-exponential
primitive kernel. At the start we make the three primitive kernels active SLPs. On each of four
subsequent DCC iterations, we run inference for five active SLPs which are obtained by perturbing
the previous set of active SLPs with global random walk updates as in Listing 2. We use 100 SMC
particles, a HMC rejuvenation kernel, and we split the airline passenger data set in 10 sub-sets. On
a M2 Pro this takes around 7 minutes and 35 seconds to complete.

This example is based on Saad et al. [46], who designed an SMC approach with involutive MCMC
rejuvenation moves for time series structure discovery and implemented it in the Julia package
AutoGP.jl. We configured our Upix-SMC-DCC instantiation to be as close to their implementation
as possible with the difference that we do not use involutive MCMC rejuvenation moves as our
approach does not move between sub-models during inference. On the same hardware, AutoGP.jl
with 100 particles takes around 8 minutes and 50 seconds to finish. In this time, the 100 particles are
propagated only once through the full model, changing the structure of the Gaussian process kernel
many times. In contrast, our approach propagates 100 particles through a total of 23 SLPs, keeping
the structure fixed. The former has the advantage of exploring more kernel structures, while the
latter performs inference and marginal likelihood estimation more accurately for a smaller set of
kernel structures.

This comparison serves only to put the runtime of our approach into perspective. Evaluating the
approximation quality of both approaches is difficult due to the infeasibility of computing a ground
truth and thus, beyond the scope of this paper. We refrain from comparing the approaches by
assessing prediction quality on a hold-out test set as others have done, because even if an approach
has better prediction quality this may not be due to better posterior approximations – the primary
goal of Bayesian inference.

4.5 Variable Elimination DCC

In the conquer step of DCC, we are not limited to approximate inference algorithms which we
have considered up until this point. In this section, we present a novel instantiation of the DCC
framework which performs inference for discrete models with stochastic support by exactly solving
the sub-models which have static structure.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 15

It is well known that discrete probabilistic models with a fixed finite number of random variables
can be solved exactly [22]. This can be achieved by naively enumerating the model support and
computing the marginal likelihood. However, as this becomes infeasible for larger models, more
sophisticated methods like Variable Elimination (VE) or Belief Propagation have to be used [22].
In variable elimination, the probability density function of a model is given in factorised form
𝑝 (𝑋) =

∏𝐾
𝑘=1 𝑓𝑘 (𝑋𝑘), where 𝑋𝑘 ⊆ 𝑋 are subsets of variables. Typically, the factors have the

form of conditional probability tables, i.e. 𝑝 (𝑥 |parents(𝑥)). This representation allows the efficient
marginalisation of a variable 𝑥 by building the factor product of all factors to which the variable 𝑥
belongs, and then summing out 𝑥 . This new factor 𝑓 ′ (𝑋) = ∑

𝑥

∏
𝑘 : 𝑥∈𝑋𝑘

𝑓𝑘 (𝑋𝑘) replaces all the
factors used in the product and gives rise to a new factorisation without 𝑥 . This elimination process
can be repeated until only a set of query variables remains or until all variables are eliminated such
that the result of the computation is the normalisation constant.

We have implemented a DCC version of variable elimination in Upix as follows. In the method
get_query_variables , the user may specify query variables. As the efficiency of variable elim-
ination heavily depends on the elimination order, we enable the user to customise it with a
get_elimination_order method, but we also provide a strong default ordering. We have imple-
mented a JAX interpreter which automatically constructs the conditional probability table for each
variable in the sub-model, thus setting up the factorisation. By default, this is done one factor at a
time, which may cause a lot of compilation overhead. To remedy this, we give the user the option
to specify sets of variables for which the factors can be computed in one pass in a get_factors

method. Finally, variable elimination is performed in run_inference for each SLP and we can use
the exact normalisation constant computed as a by-product as weight in estimate_log_weight .
To test the variable elimination DCC approach, we consider the urn model of Milch et al. [36].

In this model, we have an urn with an unknown number of balls 𝑁 ∼ Poisson(6) each of which
has equal prior probability of being black or white. We repeatedly draw a ball, observe its color
with 80% accuracy, and put it back. With posterior inference we aim to answer: Given that we
observed 5 white and 5 black balls, how many balls are inside the urn? As the number of balls
is unknown, the support structure of this model is stochastic and cannot be directly solved with
exact inference. With our Upix implementation it takes 13 seconds to compute the factorisation
and the exact solution for 1 to 20 balls (64 seconds with unoptimised factor computation). In this
implementation, we customised SLP initialisation to be performed in order of the number of balls.
This gives a maximum absolute error of 1.315 · 10−6 to the true posterior probabilities mass function
over 𝑁 computed analytically. For reference, producing 107 importance samples in BLOG [35, 54],
a system designed for such models, takes 27 seconds and yields an error of 5.260 · 10−4.

5 Scaling Experiments

So far, we have demonstrated the capabilities of Upix only on consumer-grade hardware like the M2
pro CPU. In comparison to existing probabilistic inference implementations, we observed that Upix
enables faster inference which results in better approximations as summarised in Table 1. In this
section, we shift our attention to large-scale computational hardware and evaluate the capabilities
of Upix on machines with up to 64 CPU cores and 8 GPU devices.

First, we note that DCC algorithms can be straightforwardly parallelised by running inference for
multiple SLPs in a multi-processing fashion on multiple CPU cores or multiple accelerator devices.
This parallelisation method is expected to scale perfectly for models which require the exploration
of many SLPs. Although this parallelisation method is supported in Upix, conducting an experiment
to evaluate it would offer limited value. Instead, we examine how inference algorithms executed
on individual SLPs may benefit from the use of multiple accelerators. Note that since models with

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Böck and Cito

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4
2,

04
8

4,
09

6
8,

19
2

16
,3

84
32

,7
68

65
,5

36
13

1,
07

2
26

2,
14

4
52

4,
28

8
1,

04
8,

57
6

10

20

50

100

200

500

1,000

2,000

R
u

n
ti

m
e

[s
]

a) Pedestrian Model - MCMC

NP-DHMC

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4
2,

04
8

4,
09

6
8,

19
2

16
,3

84
32

,7
68

65
,5

36
13

1,
07

2
26

2,
14

4

10

20

50

100

200

500

1,000

2,000

R
u

n
tim

e
[s]

b) Gaussian Mixture Model - RJMCMC

Gen RJMCMC

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4
2,

04
8

4,
09

6
8,

19
2

16
,3

84
32

,7
68

65
,5

36
13

1,
07

2
26

2,
14

4
52

4,
28

8
1,

04
8,

57
6

number of MCMC chains

0.0

0.1

0.2

0.3

0.4

0.5

L
∞

(F̂
,F

)
d

is
ta

n
ce

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4
2,

04
8

4,
09

6
8,

19
2

16
,3

84
32

,7
68

65
,5

36
13

1,
07

2
26

2,
14

4

number of MCMC chains

0.0

0.2

0.4

0.6

0.8

1.0

L
∞

(F̂
,F

)
d

istan
ce

1
x

1

1
x

2

1
x

4

1
x

8

2
x

8

4
x

8

8
x

8

16
x

8

32
x

8

64
x

8

12
8

x
8

25
6

x
8

51
2

x
8

1,
02

4
x

8

2,
04

8
x

8

10

20

50

100

200

500

1,000

2,000

R
u

n
ti

m
e

[s
]

c) Gaussian Process Model - VI

SDVI

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4

2,
04

8

4,
09

6

8,
19

2

16
,3

84

32
,7

68

10

20

50

100

200

500

1,000

2,000

R
u

n
tim

e
[s]

d) Gaussian Process Model - SMC

AutoGP

1
x

1
1

x
2

1
x

4
1

x
8

2
x

8
4

x
8

8
x

8
16

x
8

32
x

8
64

x
8

12
8

x
8

25
6

x
8

51
2

x
8

1,
02

4
x

8
2,

04
8

x
8

number of VI runs times number of samples per step

75

100

125

150

175

200

S
L

P
b

es
t

E
L

B
O

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4
2,

04
8

4,
09

6
8,

19
2

16
,3

84
32

,7
68

number of SMC particles

50

100

150

200

S
L

P
m

argin
al

likelih
o

o
d

UPIX NVIDIA L40S

1 GPU / 8 CPUs

UPIX NVIDIA A40

2 GPUs / 16 CPUs

UPIX 2x AMD EPYC 9355

4 GPUs / 32 CPUs

Reference on CPU

8 GPUs / 64 CPUs

Fig. 7. Scaling experiments. Top plots: runtime of Upix DCC algorithms and reference implementations on

various hardware. Bottom plots: quality of posterior approximation. For each model, the same set of SLPs

was used for all measurements to ensure a fair comparison.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 17

Table 1. Comparison of DCC algorithms implemented in Upixmodelled after baseline algorithms and executed

on consumer hardware (M2 Pro CPU).

Model Method Details Runtime 𝐿∞

Pedestrian NP-DHMC [28] 8 · 1 000 samples 2m 01s 0.02372
Upix MCMC-DCC 6 · 8 · 25 000 samples 25s 0.00133

GP SDVI [42] 106 step budget, 5 phases, 110 SLPs 18m 20s -
Upix VI-DCC 106 step budget, 5 phases, 98 SLPs 2m 24s -

GMM Gen [33] 8 · 25 000 samples 1m 35s 0.00759
Upix RJMCMC-DCC 11 · 8 · 25 000 samples 1m 31s 0.00401

GP AutoGP [46] 100 particles, propagated once 7m 35s -
Upix SMC-DCC 100 particles, 23 SLPs 8m 50s -

Urn BLOG (Swift) [54] 107 importance samples 27s 5.3 · 10−4
Upix VE-DCC 20 SLPs solved exactly 13s 1.3 · 10−6

static support structure are also expressible in Upix and yield a single SLP, the experimental results
are likewise applicable to this class of models. Figure 7 shows the complete experiment results
which we discuss in detail in the following sections.

5.1 Scaling MCMC

In MCMC algorithms, each sample depends on the predecessor in the chain making them inherently
sequential. Parallelisation can only be achieved when running multiple, typically 2-4, long chains at
once. Recently, the many-short-chain approach has gained more attention [24, 49], where instead
of approximating the posterior with long auto-correlated chains, it is approximated with thousands
of short chains, sometimes using only their independent end-points. As MCMC algorithms are only
asymptotically correct, it remains an open question how short the chains may be [31, 32].
We test this approach in Upix by running MCMC-DCC for the Pedestrian model with up to

220 = 1 048 576 chains of 256 samples each and RJMCMC-DCC for the GMM model with up to
218 = 262 144 chains of 2028 samples each, using only their endpoints in the final approximation.
We ran DCC ten times with different RNG seeds and make the runs comparable by using a fixed
set of 8 SLPs. We show the 𝐿∞ distance to the ground truth posterior in Figure 7 a) and b) on the
bottom. As expected, the approximation quality improves with increasing number of chains.

On the top plots, we also report runtime measurements on various hardware. We observe close
to perfect scaling: doubling the number of chains doubles the runtime, doubling the number of CPU
cores / GPU devices halves the runtime. Due to the longer compile time, GPUs only outperform
CPUs when the number of chains exceeds 216 = 65 536. Only these large workloads benefit form
using multiple GPUs. We note that the newer generation NVIDIA L40s GPUs compile JAX programs
faster than the A40 GPUs, but unfortunately, we ran into device communication issues for multiple
L40s devices and could not complete the experiments. We also report runtimes on CPU for the
NP-DHMC and RJMCMC Gen implementation after which our DCC algorithms were modelled.

5.2 Scaling Variational Inference

Although Variational Inference has been scaled up to very large datasets [19], running VI on
accelerators in an embarrassingly parallel way for smaller datasets has been less explored. At first
glance, the parameter 𝐿, which controls the number samples taken to estimate the ELBO gradient
in each step, seems like a good candidate for scaling: more accurate gradient estimates equals
faster convergence. While this is true, fast convergence to a particular local maximum is often

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Böck and Cito

less desirable than having higher variance gradient estimates which help escape bad local maxima.
We demonstrate this in Figure 8, where it can be seen that running VI eight times with 𝐿 = 8 and
picking the best run finds a better maxima compared to running VI once with 𝐿 = 64.
Motivated by this finding, we examine this multi-run VI approach at large scale in Figure 7 c).

In the lower plot, we show VI results for the Gaussian process SLP corresponding to kernel
(PER + RQ) × LIN, where we fix 𝐿 = 8 and increase the number of parallel VI runs up to 2048. We
performed 10 experiment repetitions and visualise the best ELBO achieved as boxplots. Note that
in the VI run itself the ELBO is estimated with 𝐿 = 8 samples, but for the plot we computed the
ELBOs more accurately with 10 000 samples. It can be seen that with increasing number of runs
better ELBOs are achieved more consistently.

As before, we measured the runtime of our multi-run SDVI approach with a fixed set of 8 SLPs
on various hardware, see the upper plot in Figure 7 c). The scaling is again close to perfect. Notably,
it is beneficial to use GPUs already for 2 parallel runs. For reference, we also measure the runtime
of the PyTorch SDVI implementation [42] on CPU. This implementation does not support multiple
parallel VI runs and does not implement the gradient estimate in vectorised fashion. Thus, we only
show data for single runs and 8 CPUs, because we found that increasing the number of CPUs does
not lower runtime. However, we reiterate that this SDVI implementation does support running
inference for multiple SLPs in parallel in multiple processes.

0 250 500 750 1000 1250 1500 1750 2000
iteration

100

0

100

EL
BO 1 x L=1

1 x L=8
8 x L=8
1 x L=64

Fig. 8. ELBO curves for Variational Inference runs for

Gaussian Process SLP (PER+RQ) ×LINwith various 𝐿.

103

105

107

109 sum
 of factor sizes

cumulative size of factors

0 5 10 15 20 25
number of balls in urn

1

10

tim
e

[s
]

AMD EPYC 9355 256GB
A100 80GB
L40s 48GB

Fig. 9. Cumulative size of factors versus inference

runtime of variable elimination for the Urn model.

5.3 Scaling Sequential Monte Carlo

It is a well-known fact that increasing the number of particles in SMC improves approximation
quality [10]. We confirmed this by running SMC 10 times for the Gaussian process SLP correspond-
ing to kernel (PER+RQ) ×LIN for up to 215 = 32 768 particles. As expected and shown in Figure 7 d),
the marginal likelihood (normalisation constant) estimates increase and exhibit less variance with
increasing number of particles.
The runtime of SMC-DCC measured for a fixed set of 8 SLPs scales close to perfectly again, as

can be seen on the top plot in Figure 7 d). GPUs are preferable to CPUs with number of particles
exceeding 212 = 4 096. The runtime of AutoGP scales similarly to SMC-DCC in Upix on CPUs. We
have included these runtimes solely to have a reference for the scaling properties of Upix. Although
our SMC-DCC algorithm was inspired by AutoGP’s methodology, the reported runtimes should
not be interpreted as directly comparable, since the two approaches differ (see Section 4.4).

5.4 Scaling Variable Elimination

Variable elimination for discrete models is performed through repeated factor products. The product
of factor 𝑓1 with variables 𝑋1 and factor 𝑓2 with variables 𝑋2 is implemented in log-space as sum of
their tables given by arrays, where shared variables 𝑥 ∈ 𝑋1 ∩ 𝑋2 are placed at the same axis and

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 19

axes corresponding to variables 𝑥 ∉ 𝑋1 ∩ 𝑋2 are broadcasted. For models with high dimensional
support this summation involves large arrays which can be efficiently computed on GPUs.

However, we found that variable elimination, tested on the Urn model, is memory bound. As can
be seen in Figure 9, the size of the involved factors, and thus required memory, scales exponentially
with 𝑁 – the number of balls in the urn. This leads to out-of-memory errors at 𝑁 = 22 for the 48GB
A40 and L40s GPUs and at 𝑁 = 23 for the 80GB A100 GPU. At these factor sizes, the computation
time on GPU still exceeds the runtime of a CPU. In principle, we estimate that we could push 𝑁 up
to 24 or 25 by sharding the factors among multiple GPU devices or by unloading unused factors
from the devices. As the accuracy of the posterior approximation is already close to numerical
precision at 𝑁 = 23, this would not significantly improve the inference quality and we leave such
experiments for future work.

6 Limitations

6.1 Exploding Number of SLPs

By design, Upix inherits the general limitations of the DCC approach. The DCC approach works
well when the total number of sub-models / SLPs is low or when the observed data makes it possible
to guide inference towards a small set of SLPs with high posterior mass. This was the case for all
models considered: for the Pedestrian model we can reject SLPs corresponding to a number of steps
greater than 6; for the GMM we can reject SLPs corresponding to a number of components greater
than 11; for the Gaussian Process model the number of kernel structures is large, but most of them
do not fit the data well; for the Urn model, we can enumerate all 20 relevant SLPs.
We briefly discuss a model for which the DCC approach fails. In statistical phylogenetic anal-

ysis [45], birth-death models provide a means to infer properties of the evolutionary tree of a
given species. e.g. the birth or death rate of lineages. Data is inherently partial, lacking information
about extinct lineages. Thus, it is the job of inference to consider many unobserved lineages and
evolutionary trees that may explain the partial observed data. In DCC, this leads to an exploding
number of SLPs, none of which can be easily rejected based on the partial observations.

6.2 Compilation Time

Upix builds on the JIT-compilation machinery of JAX. Depending on model complexity, inference
algorithm complexity, and hardware, this leads to substantial runtime overhead. In Table 2, we
report our estimated compilation overhead for the evaluation in Section 4 on consumer hardware.
In our scaling experiments of Section 5, we showed that for GPUs the computation time exceeds
compile time only for large workloads for most models. Nevertheless, we demonstrated that our
method, including compilation, achieves between 7 and 720 times more computation within the
same time budget, compared to existing approaches. Furthermore, we showed that Upix enables
scaling of inference algorithms on GPUs to workloads that are impractically slow on CPUs and
existing approaches. Finally, future work on iterative compilation in JAX may further reduce
compilation overhead.

Table 2. Estimated compilation overhead as fraction of runtime for all considered models.

Pedestrian GP-VI GMM GP-SMC Urn

21% 14% 39% 13% 48%

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Böck and Cito

7 Related Work

7.1 Universal PPLs and Programmable Inference

With the release of Church, Goodman et al. [15] was the first to coin the term universal PPL.
Since then, many universal PPLs were developed including WebPPL [16], Anglican [50], Pyro [6],
and Turing [14]. The universal PPL Venture [30] and its successor Gen [12] are projects which
pioneered programmable inference. Upix adapts many established programmable inference ideas
which have been developed for MCMC [30], variational inference [4], sequential Monte Carlo [25],
and involutive MCMC [11]. It also supports the specification of variational distributions as guide
programs, an approach popularised by Pyro [6]. While some components of the inference machinery
in the aforementioned systems can be run on GPUs, none support compiling a full programmable
inference routine to accelerator hardware for models with stochastic support, such as Upix.

7.2 Inference for Models with Stochastic Support Structure

Many inference algorithms, like light-weight Metropolis Hastings algorithm [53], do not require
assumptions about the support of the target model. This makes them general purpose, but also less
efficient. When we can put assumptions on the model, like finite dimensionality and differentiability,
general-purpose algorithms are outperformed by specialised algorithms like NUTS [20]. There are
efforts to extend these specialised algorithms to stochastic support models, e.g. non-parametric
HMC [28] or non-parametric involutive MCMC [29].
The Divide-Conquer-Combine (DCC) approach [55] provides a technique to run inference

algorithms, specialised for static support structures, on models specified in a universal PPL. This
approach is under-explored with only one extension to variational inference called SDVI [43]. As
the implementation of the original publication is closed source, there is only one open source
implementation of the DCC approach by Reichelt et al. [42] in Pyro [6] (which we compared against
in Sections 4 and 5) with a rudimentary translation to NumPyro [41]. Upix is the first system to
realise the DCC approach as a framework allowing the instantiations of many new DCC-based
inference algorithms.

7.3 Accelerated Inference in Probabilistic Programming Systems

Compiling inference algorithms designed for universal PPLs to accelerator hardware like GPUs
or TPUs is challenging. Upix achieves this compilation by building on the DCC approach, but
there also exist other techniques. To the best of our knowledge, other than Upix, Lundén et al. [27]
presents the only approach capable of compiling a full inference routine for a universal PPL to
GPU. However, they solely focus on sequential Monte Carlo.

In general, GPU support is relatively limited in probabilistic programming. We highlight several
systems that provide GPU support but, unlike universal PPLs, achieve this by adopting more
restricted modelling languages. LibBi [37] is a language for Bayesian state-space modelling that fea-
tures an OpenMP and CUDA backend for their sequential Monte Carlo implementation. Augur [21]
is a probabilistic programming system that enables compilation of MCMC algorithms to CPU and
GPU. An OpenCL backend was developed for Stan in 2019 [9]. Systems with a JAX backend like
NumPyro [41], BlackJax [7], and TensorflowProbability [24], enable inference of finite dimensional
models with static support (i.e., no stochastic control flow or dynamic array shapes) on GPUs and
TPUs. Recently, ProbZelus, a reactive probabilistic programming langauge, was also equipped with
a JAX backend [2].
It is more common to use GPU acceleration in deep probabilistic programming where models

incorporate neural networks. For instance, to compute the log-probability density function, systems
like Edward [51] or Pyro [6] can dispatch the neural network computations to GPUs.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 21

8 Conclusion

We presented Upix, the first probabilistic programming system that realises the divide-conquer-
combine (DCC) approach as a programmable inference framework for universal PPLs. This system
enables not only the implementation of existing DCC algorithms, like the original DCC and SDVI,
but also the formulation of new DCC algorithms, as was demonstrated by introducing RJMCMC-
DCC, SMC-DCC, and VE-DCC. By building on the JAX infrastructure, JIT-compilation to CPUs,
GPUs, and TPUs was achieved. On a consumer-grade CPU, this resulted in 7 to 720 times more
computation within the same time budget, compared to prior methods, which substantially improves
approximation quality for challenging probabilistic models. Lastly, in an empirically evaluation
on machines up to 64 CPU cores and 8 GPU devices, we showed how inference algorithms can be
scaled in Upix to workloads that are impractically slow for CPUs and existing approaches.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Böck and Cito

References

[1] Anonymous. 2025. UPIX: Universal Programmable Inference in JAX. https://anonymous.4open.science/r/UPIX-A583/.
[2] Guillaume Baudart, Louis Mandel, and Reyyan Tekin. 2022. Jax based parallel inference for reactive probabilistic

programming. In Proceedings of the 23rd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and
Tools for Embedded Systems. 26–36.

[3] Atilim Güneş Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Meadows, Jialin Liu, Andreas Munk, Saeid
Naderiparizi, Bradley Gram-Hansen, Gilles Louppe, et al. 2019. Etalumis: Bringing probabilistic programming to
scientific simulators at scale. In Proceedings of the international conference for high performance computing, networking,
storage and analysis. 1–24.

[4] McCoy R Becker, Alexander K Lew, Xiaoyan Wang, Matin Ghavami, Mathieu Huot, Martin C Rinard, and Vikash K
Mansinghka. 2024. Probabilistic programming with programmable variational inference. Proceedings of the ACM on
Programming Languages 8, PLDI (2024), 2123–2147.

[5] Michael Betancourt. 2017. A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint arXiv:1701.02434
(2017).

[6] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. 2019. Pyro: Deep universal probabilistic programming. The
Journal of Machine Learning Research 20, 1 (2019), 973–978.

[7] Alberto Cabezas, Adrien Corenflos, Junpeng Lao, and Rémi Louf. 2024. BlackJAX: Composable Bayesian inference in
JAX. arXiv:2402.10797 [cs.MS]

[8] Bob Carpenter, Andrew Gelman, MatthewDHoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming language. Journal of statistical
software 76, 1 (2017).

[9] Rok Češnovar, Steve Bronder, Davor Sluga, Jure Demšar, Tadej Ciglarič, Sean Talts, and Erik Štrumbelj. 2019. GPU-based
parallel computation support for Stan. arXiv preprint arXiv:1907.01063 (2019).

[10] Nicolas Chopin, Omiros Papaspiliopoulos, et al. 2020. An introduction to sequential Monte Carlo. Vol. 4. Springer.
[11] Marco Cusumano-Towner, Alexander K Lew, and Vikash K Mansinghka. 2020. Automating involutive MCMC using

probabilistic and differentiable programming. arXiv preprint arXiv:2007.09871 (2020).
[12] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K Mansinghka. 2019. Gen: a general-purpose

probabilistic programming system with programmable inference. In Proceedings of the 40th acm sigplan conference on
programming language design and implementation. 221–236.

[13] Roy Frostig, Matthew James Johnson, and Chris Leary. 2019. Compiling machine learning programs via high-level
tracing. In SysML conference 2018.

[14] Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language for flexible probabilistic inference. In International
conference on artificial intelligence and statistics. PMLR, 1682–1690.

[15] Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum. 2012. Church: a
language for generative models. arXiv preprint arXiv:1206.3255 (2012).

[16] Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and Implementation of Probabilistic Programming
Languages. http://dippl.org. Accessed: 2025-3-20.

[17] Peter J Green. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.
Biometrika 82, 4 (1995), 711–732.

[18] Nils Lid Hjort, Chris Holmes, Peter Müller, and Stephen G Walker. 2010. Bayesian nonparametrics. Vol. 28. Cambridge
University Press.

[19] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. 2013. Stochastic variational inference. the Journal
of machine Learning research 14, 1 (2013), 1303–1347.

[20] Matthew D Hoffman, Andrew Gelman, et al. 2014. The No-U-Turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1 (2014), 1593–1623.

[21] Daniel Huang, Jean-Baptiste Tristan, and Greg Morrisett. 2017. Compiling Markov chain Monte Carlo algorithms for
probabilistic modeling. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 111–125.

[22] Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles and techniques. MIT press.
[23] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. 2017. Automatic differentiation

variational inference. Journal of machine learning research 18, 14 (2017), 1–45.
[24] Junpeng Lao, Christopher Suter, Ian Langmore, Cyril Chimisov, Ashish Saxena, Pavel Sountsov, Dave Moore, Rif A

Saurous, Matthew D Hoffman, and Joshua V Dillon. 2020. tfp. mcmc: Modern Markov chain Monte Carlo tools built
for modern hardware. arXiv preprint arXiv:2002.01184 (2020).

[25] Alexander K Lew, George Matheos, Tan Zhi-Xuan, Matin Ghavamizadeh, Nishad Gothoskar, Stuart Russell, and
Vikash K Mansinghka. 2023. Smcp3: Sequential monte carlo with probabilistic program proposals. In International

https://anonymous.4open.science/r/UPIX-A583/
https://arxiv.org/abs/2402.10797
http://dippl.org

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 23

conference on artificial intelligence and statistics. PMLR, 7061–7088.
[26] Fernando Llorente, Luca Martino, David Delgado, and Javier Lopez-Santiago. 2023. Marginal likelihood computation

for model selection and hypothesis testing: an extensive review. SIAM review 65, 1 (2023), 3–58.
[27] Daniel Lundén, Joey Öhman, Jan Kudlicka, Viktor Senderov, Fredrik Ronquist, and David Broman. 2022. Compiling

Universal Probabilistic Programming Languages with Efficient Parallel Sequential Monte Carlo Inference.. In ESOP.
29–56.

[28] Carol Mak, Fabian Zaiser, and Luke Ong. 2021. Nonparametric hamiltonian monte carlo. In International Conference
on Machine Learning. PMLR, 7336–7347.

[29] Carol Mak, Fabian Zaiser, and Luke Ong. 2022. Nonparametric involutive markov chain monte carlo. In International
Conference on Machine Learning. PMLR, 14802–14859.

[30] Vikash K Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018.
Probabilistic programming with programmable inference. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 603–616.

[31] Charles C Margossian and Andrew Gelman. 2023. For how many iterations should we run Markov chain Monte Carlo?
arXiv preprint arXiv:2311.02726 (2023).

[32] Charles C Margossian, Matthew D Hoffman, Pavel Sountsov, Lionel Riou-Durand, Aki Vehtari, and Andrew Gelman.
2024. Nested ^R: Assessing the convergence of Markov chain Monte Carlo when running many short chains. Bayesian
Analysis 1, 1 (2024), 1–28.

[33] George Matheos, Alexander K Lew, Matin Ghavamizadeh, Stuart Russell, Marco Cusumano-Towner, and Vikash
Mansinghka. 2020. Transforming worlds: Automated involutive MCMC for open-universe probabilistic models. In
Third Symposium on Advances in Approximate Bayesian Inference.

[34] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward Teller. 1953.
Equation of state calculations by fast computing machines. The journal of chemical physics 21, 6 (1953), 1087–1092.

[35] Brian Milch, Bhaskara Marthi, Stuart Russell, David A. Sontag, Daniel L. Ong, and Andrey Kolobov. 2005. BLOG:
Probabilistic Models with Unknown Objects. In IJCAI-05, Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005, Leslie Pack Kaelbling and Alessandro Saffiotti
(Eds.). Professional Book Center, 1352–1359.

[36] Brian Milch, Bhaskara Marthi, David Sontag, Stuart Russell, Daniel L Ong, and Andrey Kolobov. 2005. Approximate
inference for infinite contingent Bayesian networks. In International Workshop on Artificial Intelligence and Statistics.
PMLR, 238–245.

[37] Lawrence M Murray. 2015. Bayesian state-space modelling on high-performance hardware using LibBi. Journal of
Statistical Software 67 (2015), 1–36.

[38] Kirill Neklyudov, Max Welling, Evgenii Egorov, and Dmitry Vetrov. 2020. Involutive MCMC: a unifying framework. In
International Conference on Machine Learning. PMLR, 7273–7282.

[39] Akihiko Nishimura, David B Dunson, and Jianfeng Lu. 2020. Discontinuous Hamiltonian Monte Carlo for discrete
parameters and discontinuous likelihoods. Biometrika 107, 2 (2020), 365–380.

[40] Agostino Nobile and Alastair T Fearnside. 2007. Bayesian finite mixtures with an unknown number of components:
The allocation sampler. Statistics and Computing 17, 2 (2007), 147–162.

[41] Du Phan, Neeraj Pradhan, and Martin Jankowiak. 2019. Composable Effects for Flexible and Accelerated Probabilistic
Programming in NumPyro. arXiv preprint arXiv:1912.11554 (2019).

[42] Tim Reichelt, Luke Ong, and Thomas Rainforth. 2022. Rethinking variational inference for probabilistic programs
with stochastic support. Advances in Neural Information Processing Systems 35 (2022), 15160–15175.

[43] Tim Reichelt, Luke Ong, and Tom Rainforth. 2024. Beyond Bayesian Model Averaging over Paths in Probabilistic
Programs with Stochastic Support. In International Conference on Artificial Intelligence and Statistics. PMLR, 829–837.

[44] Sylvia Richardson and Peter J Green. 1997. On Bayesian analysis of mixtures with an unknown number of components
(with discussion). Journal of the Royal Statistical Society Series B: Statistical Methodology 59, 4 (1997), 731–792.

[45] Fredrik Ronquist, Jan Kudlicka, Viktor Senderov, Johannes Borgström, Nicolas Lartillot, Daniel Lundén, Lawrence
Murray, Thomas B Schön, and David Broman. 2021. Universal probabilistic programming offers a powerful approach
to statistical phylogenetics. Communications biology 4, 1 (2021), 244.

[46] Feras Saad, Brian Patton, Matthew Douglas Hoffman, Rif A Saurous, and Vikash Mansinghka. 2023. Sequential
Monte Carlo learning for time series structure discovery. In International Conference on Machine Learning. PMLR,
29473–29489.

[47] Feras A Saad, Marco F Cusumano-Towner, Ulrich Schaechtle, Martin C Rinard, and Vikash K Mansinghka. 2019.
Bayesian synthesis of probabilistic programs for automatic data modeling. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–32.

[48] John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck. 2016. Probabilistic programming in Python using
PyMC3. PeerJ Computer Science 2 (2016), e55.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Böck and Cito

[49] Pavel Sountsov, Colin Carroll, and Matthew DHoffman. 2024. Running markov chain monte carlo on modern hardware
and software. arXiv preprint arXiv:2411.04260 (2024).

[50] David Tolpin, Jan-Willem van de Meent, and Frank Wood. 2015. Probabilistic programming in Anglican. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2015, Porto, Portugal, September
7-11, 2015, Proceedings, Part III 15. Springer, 308–311. https://probprog.github.io/anglican/

[51] Dustin Tran, Matthew D Hoffman, Rif A Saurous, Eugene Brevdo, Kevin Murphy, and David M Blei. 2017. Deep
probabilistic programming. arXiv preprint arXiv:1701.03757 (2017).

[52] Christopher KI Williams and Carl Edward Rasmussen. 2006. Gaussian processes for machine learning. Vol. 2. MIT press
Cambridge, MA.

[53] David Wingate, Andreas Stuhlmüller, and Noah Goodman. 2011. Lightweight implementations of probabilistic
programming languages via transformational compilation. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 770–778.

[54] Yi Wu, Lei Li, Stuart Russell, and Rastislav Bodik. 2016. Swift: Compiled inference for probabilistic programming
languages. arXiv preprint arXiv:1606.09242 (2016).

[55] Yuan Zhou, Hongseok Yang, Yee Whye Teh, and Tom Rainforth. 2020. Divide, conquer, and combine: a new inference
strategy for probabilistic programs with stochastic support. In International Conference on Machine Learning. PMLR,
11534–11545.

https://probprog.github.io/anglican/

	Abstract
	1 Introduction
	2 Overview
	3 The Upix System
	3.1 Language
	3.2 Abstract Divide-Conquer-Combine
	3.3 Compiling SLPs
	3.4 Programmable Inference
	3.5 Parallelisation

	4 DCC Algorithms Instantiated with Upix
	4.1 Markov Chain Monte Carlo DCC
	4.2 Variational Inference DCC: SDVI
	4.3 Reversible Jump / Involutive MCMC DCC
	4.4 Sequential Monte Carlo DCC
	4.5 Variable Elimination DCC

	5 Scaling Experiments
	5.1 Scaling MCMC
	5.2 Scaling Variational Inference
	5.3 Scaling Sequential Monte Carlo
	5.4 Scaling Variable Elimination

	6 Limitations
	6.1 Exploding Number of SLPs
	6.2 Compilation Time

	7 Related Work
	7.1 Universal PPLs and Programmable Inference
	7.2 Inference for Models with Stochastic Support Structure
	7.3 Accelerated Inference in Probabilistic Programming Systems

	8 Conclusion
	References

