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Probabilistic Programming with Programmable
Divide-Conquer-Combine Inference on Modern Hardware

MARKUS BOC K, TU Wien, Austria
JU RGEN CITO, TU Wien, Austria

Universal probabilistic programming languages (PPLs) enable the specification of models with stochastic
support structure. Posterior inference is notoriously hard and remains difficult to accelerate on modern
hardware for this class of models. In response to these challenges, we introduce Upix - the first probabilistic
programming system that realises the divide-conquer-combine (DCC) inference algorithm as a framework.
In Urrx, a model expressed in a universal PPL is automatically split into multiple sub-models with static
support structure, which are then compiled with JAX for execution on accelerator hardware. The system
allows extensive customisation of inference algorithms by incorporating numerous established concepts from
programmable inference. To evaluate our system, we implemented two existing DCC algorithms in Up1x and
instantiated three novel algorithms. We show that our implementation achieves better approximation quality
compared to existing approaches by achieving between 7 and 720 times more computation within the same
time budget. On machines with up to 64 CPU cores and 8 GPU devices, we demonstrated that Upix enables
the scaling of inference algorithms to workloads that are impractically slow for CPUs and prior methods.

CCS Concepts: « Mathematics of computing — Bayesian computation; Statistical software; » Software
and its engineering — Just-in-time compilers.

Additional Key Words and Phrases: probabilistic programming, stochastic support, divide-conquer-combine,
programmable inference, GPU-acceleration

1 Introduction

Probabilistic programming languages (PPLs) enable the specification of probabilistic models as
programs and automate Bayesian inference. In their implementations, they have to trade off
expressivity and inference efficiency.

On one side, there are PPLs like PyMC [48] or Stan [8] which restrict the class of programs
to models with fixed and finite support structure. This allows efficient model representation and
optimised implementations of inference algorithms like HMC [5], ADVI [23], or NUTS [20]. Even
more, some probabilistic systems in this category like TensorflowProbability [24], BlackJAX [7], or
NumPyro [41] build on the JAX numerical computing library to run inference on CPUs, GPUs, and
TPUs via just-in-time (JIT) compilation.

On the other side, there are so-called universal PPLs like Gen [12], Turing [14], or Anglican [50],
which embed their probabilistic constructs in a Turing-complete programming language. To support
this large class of models they have to rely on general-purpose inference algorithms which often
can be inefficient. To overcome this problem, these PPLs typically allow the user to customise the
inference algorithms for the specific model at hand. This type of customisation, which came to be
known as programmable inference, is actively researched and developed [4, 11, 12, 25, 30].

Universal PPLs gained popularity and research interest, because models with stochastic support
structure can be easily expressed in them. Such models include mixture models with an unknown
number of components [40, 44], kernel and program induction models [46, 47], "open-universe"
models [33, 54], statistical phylogenetics models [45], models based on physical simulations [3],
and many Bayesian non-parametric models [18, 28, 52].

However, to the best of our knowledge, there exists no system that 1) makes it easy to parallelise
inference on GPUs or TPUs, 2) enables the specification of models in a universal PPL, and 3)

Authors’ Contact Information: Markus Béck, markus.h.boeck@tuwien.ac.at, TU Wien, Vienna, Austria; Jiirgen Cito, juergen.
cito@tuwien.ac.at, TU Wien, Vienna, Austria.



50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Bock and Cito

implements a programmable inference machinery. In this work, we propose to bridge this gap by
building a system following the divide-conquer-combine (DCC) approach introduced in 2020 by
Zhou et al. [55].

Conceptionally, the DCC approach is rather simple: In the divide step, a model specified in a
universal PPL is split up into multiple sub-models with fixed and finite support structure. In the
conquer step, inference is performed on the sub-models by leveraging optimised algorithms. Lastly,
in the combine step, all results are combined in an unbiased way to approximate the posterior
distribution of the full model. However, in practice, each step comes with challenges:

e Divide. It is difficult to automatically split up a probabilistic program into sub-models.
Existing approaches either rely on user-annotation or consider only the simpler case in
which the program is split up by conditioning on the values of discrete variables.

e Congquer. The derived sub-models may still pose challenging inference problem rendering
black-box approaches infeasible.

e Combine. To combine the results, we have to weigh the inference result of each sub-
model proportional to its contribution to the full posterior. This amounts to computing the
normalisation constant accurately for each sub-model - a notoriously difficult problem.

This work. We present UPix — a probabilistic programming system, which solves the above chal-
lenges by implementing the DCC approach for a universal PPL as a framework with programmable
inference in JAX: In short, a JAX program transformation was developed to split up the probabilistic
programs into sub-models automatically. Next, the system provides constructs to customise both
the inference routine and the normalisation constant computation for each sub-model making the
conquer and divide step fully programmable. Further, as a product of implementing the system in
JAX, inference in UpIx can greatly leverage vectorisation on CPUs, GPUs, and TPUs, as well as par-
allelisation across multiple devices. Lastly, through its abstractions Upix enables the development
of new DCC-based inference algorithms.

Contributions. This paper contributes:

e Uprix [1] - the first probabilistic programming system that realises the DCC approach as
a framework and implements a programmable inference machinery to run inference on
CPUs, GPUs, or TPUs for models specified in a universal PPL.

o Five instantiations of the framework yielding three novel DCC-based algorithms (two have
been adapted from prior work): a Markov chain Monte Carlo approach as in the original DCC
publication [55], Support Decomposition Variational Inference (SDVI) [42], a Reversible
Jump / Involutive MCMC inspired approach, a Sequential Monte Carlo based approach, and
a Variable Elimination based approach for discrete models.

e An empirical evaluation which compares Upix to existing work on challenging models
showing that Upix achieves 7 to 720 more computation within the same time budget on
consumer-grade CPUs, which substantially improves approximation quality.

e An investigation of the scaling properties of Upix on modern hardware (up to 64 CPU cores
and 8 GPU devices), demonstrating that inference algorithms can be scaled to workloads
that are impractically slow for CPUs and existing approaches.

2 Overview

Probabilistic programming languages (PPLs) are equipped with constructs for declaring random
variables and conditioning on observed data. In this work, we focus on universal PPLs which are PPLs
embedded in a Turing-complete language that support stochastic control flow and recursion [15].
In particular, we consider a language that allows the user to declare a random variable by linking a
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Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 3

dynamically computed label — the address — to a dynamically computed distribution in a sample
statement. Conditioning of the model is achieved by fixing the values of selected addresses to
observed data.

In Figure 1 on the left, we show how the mixture model

Normal(-3,1) ifB=1,

) ", y~Normal(z2)
Uniform(1,4) otherwise.

B ~ Bernoulli(0.5), =z~ {

may be implemented with stochastic branching in a universal PPL.

def disc_mixture(): def model2():
B = sample("B",Bernoulli(@.5), U = sample("U",Uniform(@,1))
branching=True ) if U > 0.5:
if B == 1: z = sample( "z1" ,Normal(-3,1))
z = sample("z",Normal(-3,1)) else:
else: z = sample( "z2" ,Uniform(1,4))
z = sample("z",Uniform(1,4)) sample("y",Normal(z,2),observed=2)

sample("y",Normal(z,2),observed=2)

Fig. 1. Two mixture models implemented in a universal PPL with stochastic branching. We highlight the
annotations required by prior DCC implementations to identify SLPs in yellow .

In this work, the domain of probabilistic programs is defined with traces - mappings from
addresses of random variables to their values. We interpret a probabilistic program as a function p
mapping traces to their probability density. The function p is only well-defined for traces that are
compatible with executions of the program. The support of a probabilistic program is the set of
traces which map to a positive density. For instance, for the considered mixture model, we have
p({B 0,2 = 2.3}) = pdfgernouii(os) (0) - PAyniorm(1.a) (2-3) - Pdfyormar(2:3.2) (2) ~ 0.0329.

The great expressivity of universal PPLs comes at the cost of making automated inference more
challenging. The Divide-Conquer-Combine (DCC) approach [55] proposes to solve this problem by
splitting up the model support, given by a set of traces 77, into an (typically) infinite number of
disjoint subsets 7 such that the support structure on 7% is static and finite dimensional (essentially
isomorphic to some R"” measurable space). This divide step splits the model into multiple sub-
models pi(tr) = [tr € T¢] - p(tr) such that p(tr) = X px(tr). In the context of probabilistic
programming, these sub-models are referred to as straight-line programs (SLPs) as they are free
from universal language features like stochastic control flow and recursion.

For the example mixture model, the two disjoint sub-models p;(tr) = [tr(B) = 1] - p(tr) and
p2(tr) = [tr(B) # 1] - p(tr) are given by the SLPs below, which return the log-density along with
a boolean value indicating whether the trace belongs to the sub-model.

def disc_mixture_SLP1(tr): def disc_mixture_SLP2(tr):
1p = 0.0 lp = 0.0
lp += Bernoulli(@.5).log_prob(tr["B"1) lp += Bernoulli(@.5).log_prob(tr["B"1)
lp += Normal (-3,1)).log_prob(tr["z"]) lp += Uniform(1,4).log_prob(tr["z"1)
1p += Normal(z,2).log_prob(2) lp += Normal(z,2).log_prob(2)
return lp, B == 1 return 1lp, B !=1

It is desirable for systems implementing the DCC approach to be capable of automatically finding
and compiling the associated SLP functions. However, the only existing implementations [42, 55]
rely on user-annotations to mark discrete branching variables or require the model to be rewritten
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4 Bock and Cito

such that the set of sample addresses encountered in a program run uniquely identifies the SLPs
when branching depends on continuous variables, see Figure 1. By building Upix on JAX [13], a
tracing just-in-time (JIT) compiler for Python, we are able to fully automate SLP generation without
user-annotation, see Section 3.3.

def gmm(ys: jax.Array):
N = ys.shape[0]
K
w

sample ("K",Poisson(lam-1)) + 1 # influences the shape of w, mus, and vars
sample("w",Dirichlet (jnp.full ((K,),delta)))

mus = sample("mus",Normal (jnp.full ((K,),xi),jnp.full ((K,),1/jnp.sqrt(kappa))))
vars = sample("vars",InverseGamma(jnp.full((K,),alpha),jnp.full((K,), beta)))

zs = sample("zs",Categorical(jax.lax.broadcast(w,(N,))))
sample("ys", Normal(mus[zs], jnp.sqrt(vars[zs])),observed=ys)

Fig. 2. Gaussian Mixture Model implemented in Upix making use of dynamic array shapes.

Furthermore, we consider a previously unrecognised source for stochastic model support in
probabilistic programming. To illustrate, we show a Gaussian Mixture Model (GMM) with an
unknown number of components K in Figure 2. In this program, the shapes of the arrays passed as
arguments to the distribution objects of w, mus, and vars are dynamically determined by the value
of K, thereby inducing a stochastic support whose structure varies with K. Our JAX implementation
is able to identify the SLPs fully automatically even in this case . In contrast, prior implementations
require the annotation of K with branching=True or modifiying the addresses, e.g. "w"+str (K).

The GMM also demonstrates the benefits and challenges of the conquer and combine steps
of DCC. In the conquer step, efficient inference algorithms for the static and finite dimensional
sub-models are used to approximate py ~ px = [tr(K = k)] - p(tr). While easier than inference for
the full model, inference for the sub-models is already challenging and black-box approaches as
realised in existing DCC implementations perform poorly for complex models. Instead, we propose
to use established programmable inference constructs [4, 11, 12, 25] for these sub-problems. For
instance, for the GMM, an MCMC approach based on well-known Gibbs kernels [44] can be readily
programmed as proposal distributions for a Metropolis-Hastings algorithm. Notably, these Gibbs
kernels only exist for the finite sub-models with fixed K, not for the full model.

A drawback of splitting the model into multiple sub-problems is the need to allocate compu-
tational resources effectively among high-probability SLPs. While Zhou et al. [55] and Reichelt
et al. [42] have proposed general resource allocation techniques for DCC, we leave room in UPIX to
customise resource allocation programmatically.

Finally, in the combine step of DCC, the estimates of the sub-models have to be combined in an un-
biased manner with p ~ 3, wipr. In the original formulation of DCC, the weight wy = Z; /Y. j Z ; for
Pr is computed by estimating the normalisation constants or marginal likelihood Zj. = /7; p(tr)dtr
with a variant of importance sampling. Unfortunately, this integral becomes very challenging
for complex models, and we found that general-purpose estimation techniques like importance
sampling are insufficient. Again, we propose to customise this estimation programmatically in Up1x
for which we provide programmable inference constructs. For instance, as we will elaborate in
Section 4.3, we compute the SLP weight wy for the GMM by implementing a reversible-jump kernel
that allows us to estimate the probability of "switching" between sub-models in the full posterior.
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Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 5

3 The Uprix System
3.1 Language

Uprix allows the specification of probabilistic models in a universal PPL embedded in Python. Our
syntax is adapted from Pyro, with sample statements invoking the abstract function

def sample(address:str, distribution:Distribution, [observed:Arrayl) -> Array

where address is a unique identifier for a random variable that is distributed according to argu-
ment distribution, and the observed argument is optional for incorporating observed data. A
model is given by a Python function annotated with the decorator emodel and includes sample
statements mixed with arbitrary Python code that modifies JAX arrays. Importantly, Python control
flow, like if statements and while loops, and array shapes that depend on concrete JAX array
values are allowed. Normally, this is disallowed when JIT-compiling a JAX function and leads to a
ConcretizationTypeError, because array shapes have to be statically known in compilation. For
this reason, NumPyro, the JAX implementation of Pyro, also disallows these language features and
only supports models with fixed and finite structure.! In Section 3.3, we describe how we enable
these language constructs with our custom JAX interpreter.

3.2 Abstract Divide-Conquer-Combine

At the highest level, we developed a novel abstraction of the DCC approach shown in Listing 1.
The initialise_active_slps and update_active_slps methods implement the divide step. The
former finds SLPs (sub-models) in the initialisation phase and in the update phase the latter retains
promising SLPs while discarding less promising SLPs based on the results collected so far. New
SLPs may also be instantiated and made active in the update phase. The run_inference method
implements the conquer step and performs inference for all active SLPs and stores the result. The
estimate_log_weight is responsible for computing the contribution weight of the SLP posterior to
the full model posterior. Together with the combine method the combine step of DCC is implemented.
In this last step, all results are aggregated with respect to the estimated contribution weights. In
Section 4, we will instantiate this abstract routine based on several Bayesian inference approaches
to implement existing DCC methods and to formulate novel DCC algorithms.

Listing 1. The divide-conquer-combine approach as abstracted in Upix.

class DCC:
def run(self, model):
active_slps, inactive_slps, results = [], [1, []

self.initialise_active_slps(model, active_slps, inactive_slps)
while len(active_slps) > 0:
for slp in active_slps:
self.run_inference(slp, results)
self.estimate_log_weight(slp, results)
self.update_active_slps(model, results, active_slps, inactive_slps)
return self.combine(results)

3.3 Compiling SLPs

Building on JAX enables us to formulate a simple program transformation that, for the first time,
automatically identifies and compiles straight-line programs (SLPs) from a probabilistic program.
Thus, without the need for annotations, we allow programs to contain control flow that depends
on random variables and allow programs to contain distribution objects whose support structure

INote that Reichelt contributed a rudimentary implementation of DCC [55] and SDVI [42] to NumPyro which relies on user
annotations for discrete branching variables.
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6 Bock and Cito

depends on other random variables. First, we transform a model definition according to standard
density-based semantics, where sample method calls are replaced with

value = observed if observed is not None else tr[address]
lp += distribution.log_prob(value)
return value

where tr:Dict[str,Array] is our trace data structure whose values are injected at the cor-
responding addresses if there is no observed data. In addition, we accumulate the probability
density in log-space with the variable 1p. The decorator emodel transforms a Python function
def f(args:S) -> Ttomodel(f): S -> (Dict[str,Array] -> (Float,T)) by replacing sample
statements as described above and adding the trace input argument. That is, model (f) (args) (tr)
runs the program with respect to input trace tr and outputs the return value together with its
probability density. Typically, the arguments to a probabilistic model args : s pass hyper-parameters
or observed data and are constant throughout inference. Further, the posterior distribution over
the latent random variables is of more interest than the distribution of some return value. For these
reasons, we often omit arguments and return values in model definitions in the rest of the paper to
ease presentation, but they are supported in Upix.

Note that model (f) (args) cannot be JIT-compiled in general as this function may contain control
flow and array shapes that depend on tr. Transforming the function into multiple straight-line pro-
grams by constraining the branching and shape decisions both allows us to split the underling prob-
abilistic model into multiple sub-models with disjoint support as required by DCC and allows us to
JIT-compile the SLPs. We achieve this with a tracing-based program transformation, which takes ar-
bitrary functions def g(args:s) -> T and produces trace_decisions(g): S -> (T,Bool). This
transformation is implemented as a custom JAX interpreter that executes the program with the
input arguments args, circumvents ConcretizationTypeErrors by making branching and shape
decisions according to the concrete values of args, and traces all encountered array operations
for subsequent compilation. Thus, a JIT-compilation of trace_decisions(g) with respect to args
produces a straight-line program where control flow and array shapes are fixed by args even if
the executable is invoked with inputs that would result in different control flow or array shapes
in g. To keep track of this mismatch, the transformation also adds a boolean return value which

def SLP1(tr):

1p = 0
@model lp += Uniform(@,1).log_prob(tr["U"])
def simple(): lp += Normal ([@1,1)).log_prob(tr["x_0"1)
U = sample("U",Uniform(@,1)) return lp, (tr["U"]1 > 0.5)
if U > 0.5:
N = 1 def SLP2(tr):
else: 1p = 0
N = sample("N",Poisson(3)) lp += Uniform(@,1).log_prob(tr["U"])
for i in range(N): lp += Poisson(3).log_prob(tr["N"])
sample (f"x_{i}", lp += Normal ([0,0,0]1,1).log_prob(tr["x_0"1)
Normal (zeros ((N,)),1,)) lp += Normal ([0,0,0]1,1).log_prob(tr["x_1"1)
lp += Normal ([0,0,0],1).log_prob(tr["x_2"1)
return lp, (tr["U"] <= @0.5) and (tr["N"] == 3)

Fig. 3. SLP generation process exemplified: Left: a probabilistic model defined in Upix that exhibits stochastic
support. Right: Two example straight-line programs which are equivalent to programs obtained with the JAX
transformations described in Section 3.3.
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Probabilistic Programming with Programmable Divide-Conquer-Combine Inference on Modern Hardware 7

indicates whether or not the input matches the decisions of the original args. We call args the
decision representative of the transformed program.

In the context of DCC, we have g = model (f)(model_args): Dict[str,Array] -> Float and
a trace tr:Dict[str,Array] is the decision representative of an SLP. The compiled function
trace_decisions(g) returns the log-probability density of the sub-model encoded by the SLP and
a boolean value b which is true if the input trace would result in the same SLP as the decision
representative trace tr that the function was compiled with respect to. Thus, the input trace lies
in the support of the sub-model if and only if (1p > -inf) and b.In Figure 3, we illustrated this
process by giving two example SLP generations for a model which exhibits stochastic support.
Note that the branching condition, the set of executed sample statements, and the dimensionality
of the random variables with addresses f"{x_i}" depend on the input traces. Unlike existing
implementations of DCC, our program transformation automatically compiles SLPs without the
need to annotate that the support structure depends on U and N.

Note that the described JAX transformations were implemented to be compatible with other JAX
transformations. This means that, for instance, we can use jax.vmap to vectorise the log-probability
density computation or jax.grad to differentiate the log-probability density with respect to the
trace. Both of these transformations enable an efficient implemention of gradient-based inference
algorithms like HMC [5] or ADVI [23].

3.4 Programmable Inference

In principle, every step of DCC is customisable in Uprix. We provide several instantiations of the
framework for the most popular inference algorithms including Markov chain Monte Carlo (MCMC),
sequential Monte Carlo (SMC), and Variational Inference (VI) algorithms. These instantiations
are organised hierarchically as shown in Figure 4 and provide default implementations of the
individual steps of DCC as well as convenience constructors to ease programmable inference based
on established principles [6, 12, 25, 38]. In Section 4, we will describe these instantiations in detail.

AbstractDCC MonteCarlo — DCC i: MarkovChainMonteCarlo — DCC —— ReversibleJumpMCMC — DCC
SequentialMonteCarlo — DCC

VariationalInference — DCC —— SDVI

Exact -DCC ———————— > VariableElimination — DCC

Fig. 4. Hierarchical organisation of the instantiations of DCC algorithms in Upix.

Unlike existing universal probabilistic programming systems which allow the user to customise
inference only for the full model, Upix enables the user to customise inference for each sub-model
encoded by an SLP. Crucially, at the SLP level, the trace data structure tr:Dict[str,Array] has
fixed array shapes which allows the compilation of the associated (log-)probability density function,
as discussed in Section 3.3. This enables us to also compile and execute full inference routines
programmed for each SLP with the provided convenience constructors and run them on CPUs,
GPUs, or TPUs.

Furthermore, note that at the SLP level, the log-probability density function can be "flattened"
to the form log_p: Array -> Float by concatenating the values of the input trace in fixed order.
Mathematically, the log-probability density function of an SLP is a function R” — R with fixed
domain dimension n. Most of the inference algorithms implemented in Up1x, which form the building
blocks of the programmable inference constructs, are implemented based solely on a JAX-compiled
log-probability density function. This opens up opportunities for interoperability with existing
inference systems. For instance, BlackJAX [7] is a Bayesian inference framework built around the
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8 Bock and Cito

log-probability density. But also parts of the inference machinery of TensorflowProbability [24] or
NumPyro [41] could be integrated in Upix as new building blocks for programmable inference.

Lastly, while we provide default implementations for the initialise_active_slps method and
for the update_active_slps method, it is generally beneficial to adapt them to the model at hand.
We give examples in Section 4. Effectively, this gives rise to a two-layer approach to programmable
inference. First, inference routines may be customised at the SLP level in the conquer step as
described. Second, on the meta-inference level, users may customise how the space of SLPs is
explored and how computational resources are allocated to them.

3.5 Parallelisation

The DCC approach together with JAX compilation allow for many opportunities to parallelise
inference across computational devices.

First, Upix implements parallelisation techniques for the inference run and the estimation of the
weight of a each SLP. In this parallelisation approach, computations are scheduled sequentially in
lines 6-8 of Listing 1.

Vectorisation. The vectorisation transform of JAX called jax.vmap was used to implement infer-
ence machinery as numerical computations on multi-dimensional arrays. Such computations can
be efficiently run on accelerator hardware designed for single-instruction multiple-data (SIMD)
use cases like GPUs and TPUs. This parallelisation technique is recommended for machines with a
single GPU.

Sharded Arrays. On top of vectorisation, JAX allows the distribution of computations on multi-
dimensional arrays among several accelerators with jax.pmap and jax.shard_map. Thus, we can
run inference and weight estimation for each SLP on multiple GPUs and TPUs. This is recommended
for inference and weight estimation workloads which are embarrassingly parallel. In Section 5, we
use this technique to scale MCMC to thousands of chains, VI to thousands of gradient estimates
per step, and SMC to thousands of particles.

Second, Urix implements parallelisation techniques to run inference and weight estimation for
multiple SLPs at the same time.

Multiple accelerator devices. If the inference and weight estimation workloads are not embar-
rassingly parallel, we may distribute the full workloads among GPUs and TPUs which work
independently in a multi-processing fashion.

Multiple CPU cores. By default, JAX does not allow one to dispatch multiple computations to
specific CPU cores in parallel. As some users of Upix may not have access to machines with multiple
accelerators, we decided to implement a workaround to run inference and weight estimation of
multiple SLPs with multi-processing. To achieve this, we launch multiple JAX processes pinned to
single CPU cores and send them workloads via the serialisation functionality built into JAX.

4 DCC Algorithms Instantiated with Upix
4.1 Markov Chain Monte Carlo DCC

As the first application of Upix, we adapt the DCC algorithm of Zhou et al. [55], which is built
around MCMC inference. MCMC algorithms build a chain of samples x; which are perturbed by a
kernel x;1 ~ k(.|x;) which leaves the posterior distribution invariant. This property implies that
with a sufficiently long chain, a sample from the posterior distribution is approximated. Such kernels
can be constructed even if the posterior density function is only known up to a multiplicative
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constant, e.g. if the joint probability density over latent and observed variables can be computed.
Notable examples are the Metropolis-Hastings [34], the HMC [5], or the NUTS kernel [20].

The MCMC DCC algorithm is implemented in Upix as sketched in Listing 2. It is realised as a
sub-class of MonteCarloDcC our abstract implementation of DCC which approximates the posterior
with a weighted set of traces. The initialisation of active SLPs is done by sampling a trace from the
model prior and checking if the trace is not in the support of any SLP found so far. As proposed by
Zhou et al. [55], active SLPs are updated by running a global random walk Metropolis-Hastings
algorithm on the full model, where traces may change with respect to their set of addresses and array
shapes. For this reason, this global algorithm cannot be JIT-compiled and serves solely for updating
the set of active SLPs. In the MarkovChainMonteCarloDCC class the normalisation constant of an
SLP is estimated via importance sampling as in Zhou et al. [55]. To ease programmable inference
for MCMC-based DCC, we provide convenience constructs adapted from prior work [12, 14] to
define MCMC kernels for each SLP in the get_MCMC_inference_regime method, which are then
used in the MCMC routine launched in the run_inference method.

Listing 2. Implementation sketch of Markov Chain Monte Carlo DCC in Upix.
class MonteCarloDCC(AbstractDCC):
def initialise_active_slps(self, model, active_slps, inactive_slps):
# draw traces from prior
def update_active_slps(self, model, results, active_slps, inactive_slps):
# global random walk updates
def combine(self, results):
# combine inference results as set of weighted traces
class MarkovChainMonteCarloDCC(MonteCarloDCC):
def estimate_log_weight(self, slp, results):
# estimate log-weight with importance sampling
def get_MCMC_inference_regime(self, slp):
# provided by the user
def run_inference(self, slp, results):
# run MCMC routine based on self.get_MCMC_inference_regime(slp)

Our programmable inference approach to MCMC-based DCC is best illustrated with an example.
Mak et al. [28] introduced the Pedestrian model shown in Figure 5 to motivate NP-DHMC their
novel non-parametric variant of discontinuous HMC [39] which can handle both discontinuities in
the density function and stochastic support. The Pedestrian model is challenging, because the while
loop condition and the observation depend on all random variables sampled so far. In the spirit
of DCC, we approximate the posterior of this model by running discontinuous HMC individually
for each SLP and combine the results later. Upix automatically splits up this program into SLPy,
k € N\ {0}, where SLPg is the program that executes the while loop for k iterations.

On the right in Figure 5, we show how users may customise MCMC kernels for the Pedestrian
model with the provided constructs. They can choose from a set of inference algorithms like
Metropolis-Hastings MH or discontinuous HMC bpHMC, customise the proposal distributions and
hyper-parameters, and apply them to a subset of variables which may be specified with regular
expressions.

To compare our approach, we ran the NP-DHMC PyTorch implementation of Mak et al. [28] with
8 chains of 1000 samples configured with their best scoring hyper-parameter values: 50 HMC steps
with step-size 0.1. Running each chain in multiple processes in parallel takes 121 seconds on a 10
core M2 Pro machine. In less than 25 seconds (our reported runtimes always include JAX compile
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@model
def pedestrian(): regime = MCMCSteps(
position = sample("start",Uniform(@,3)) MCMCStep (
distance = 0. Variables("start"),
t =0 MH(lambda _: Uniform(@,3))
while (position > @) & (distance < 10): ),
t += 1 MCMCStep (
step = sample(f"step_{t}",Uniform(-1,1)) Variables(r"step_\d+"),
position += step DHMC (50,0.05,0.15)
distance += jax.lax.abs(step) )
sample ("obs", )

Normal (distance,@.1),observed=1.1)

Fig. 5. Left: Pedestrian model [28] in Upix. Right: MCMC routine specified with provided constructs.

time), we can run 8 chains of 25000 samples in Upix-MCMC-DCC with the same configuration
for DHMC. This runs inference and combines results for SLP; to SLP¢. It was determined that all
other SLPs do not contribute enough to the posterior to warrant an inference run. For this, we
customised initialise_active_slps to iterate over the SLPs ordered by number of steps and stop
adding SLPy to active_slps once the normalisation constant of SLPy is estimated to be a factor of
10% smaller than the highest weighted SLP seen so far.

Thus, with inference routines JIT-compiled for each SLP we are able to take 720 times more
samples per second than the NP-DHMC algorithm which has to move between SLPs in a non-
compiled program. At this point, we emphasise that the implementation of Mak et al. [28] was
not optimised for speed. Nevertheless, in Figure 6 we show the qualitative difference between
the achieved approximations to the true posterior. The approximation quality is quantified with
Leo(F, F) = max, |F(x) — F(x)|, where F is the ground truth posterior cumulative distribution
function over the "start" variable x estimated with 10'? importance samples and F is the approxi-
mation obtained with the MCMC approaches. NP-DHMC achieves L., ~ 0.02372 while our Urix
implementation achieves Le, = 0.00133.

1.4 1.4

124 ground truth 124 ground truth
) —— NP-DHMC ) —— MCMC-DCC

1.0 1.04

0.8 0.8

0.6 0.6

0.4 0.4 4

0.2 4 0.21

0.0 T T T T T T T 0.0 T T T T T T T

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 6. Approximations to the true posterior of the Pedestrian model (estimated with 10'2 importance samples)
with 8 - 1000 samples from NP-DHMC versus 6 - 8 - 25000 samples from MCMC-DCC as 100 bin histograms.

4.2 Variational Inference DCC: SDVI

In Variational Inference the posterior distribution is approximated by optimising the parameters ¢ of
a variational distribution q4 to minimise the Kullback-Leibler divergence to the posterior. In practice,
the so-called evidence-lower-bound (ELBO) L(#) = E.~q, [Iogp(z) —log gy (z)] is maximised which
constitutes an equivalent but more practical optimisation objective. This optimisation is achieved
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via gradient ascent and typically implemented on top of automatic differentiation machinery in
probabilistic programming systems. In this case, the approach is called Automatic Differentiation
Variational Inference (ADVI) [23].

Reichelt et al. [42] proved that when we fit a local variational distribution qkk to the posterior of
each individual sub-model encoded by an SLP, then the mixture of the local variational distributions,
where each q’;&k is weighted proportional to their local ELBO, wy oc exp(Li(¢x)), is the optimal
approximation to the full model. This enabled their variational inference based DCC approach.

This approach is implemented in Upix as sketched in Listing 3. To ease programmable inference
we allow the user to specify a variational distribution as a so-called guide program following Pyro’s
approach [6]. A guide program in Upix is a Python function made up from sample statements
sample (...) and parameter declarations param(...). The distributions in sample statements are
parameterised with respect to the declared parameters and we can compute the ELBO gradient via
JAX’s automated differentiation machinery. In addition, we also make auto-guides available to the
user that approximate the posterior with a parameterised multivariate Gaussian distribution.

Listing 3. Implementation sketch of Variational Inference DCC and SDVI in Upix.
class VariationalInferenceDCC(AbstractDCC):
def initialise_active_slps(self, model, active_slps, inactive_slps):
# draw traces from prior
def get_guide(self, slp):
# provided by the user
def run_inference(self, slp, results):
# run ADVI routine based on self.get_guide(slp)
def estimate_log_weight(self, slp, results):
# estimate log-weight with local ELBO
def combine(self, results):
# combine inference results as a mixture of variational distributions
class SDVI(VariationalInferenceDCC):
def update_active_slps(self, model, results, active_slps, inactive_slps):
# use SuccessiveHalving strategy by Reichelt et al. 2022

Reichelt et al. [42] also proposed a Successive Halving strategy to allocate computational resources
to the most promising SLPs. In this strategy, a fixed computational budget is divided among SLPs for
anumber of phases. After each phase, half of the SLPs are discarded, while the other half is optimised
with double the number of ADVI iterations. Their full method is called Support Decomposition
Variational Inference (SDVI) which we also implemented in UpPIx via the update_active_slps
method, see Listing 3.

We compare the runtime of their Pyro implementation of SDVI against our implementation in
Urix.? As a benchmark, we implement a probabilistic program to infer the kernel structure of a
Gaussian Process model for airline passenger data. The kernel structure is given by the probabilistic
context-free grammar K ::= SE|RQ|PER|LIN|K + K|K X K, where we consider the squared-exponential,
rational-quadratic, periodic, and linear primitive kernels. This model exhibits stochastic support as
the number of base kernels is not fixed and unbounded. We have a unique SLP for each possible
kernel structure. The prior over the kernel grammar is implemented as a recursive Python function.
Like Reichel et al., we also use an auto-guide for each SLP. Implementation details can be found in
the replication package [1].

“Note that Reichelt also contributed a NumPyro version of SDVI, which presumably would run faster. However, this
implementation is rudimentary and does not fully replicate their SDVI approach [42].
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The Pyro version with 10 parallel processes takes 18 minutes and 20 seconds on a M2 Pro to run
ADVI on initially 110 random SLPs reduced to the 10 best SLPs over 5 phases with a budget of 10°
total ADVI steps. Our equivalent Upix implementation takes only 2 minutes and 24 seconds to
go from 98 random SLPs to the 10 best, again over 5 phases. Here, we use the Mutliple CPU cores
parallelisation strategy with 10 parallel JAX processes, see Section 3.5. As computing a ground
truth posterior for the Gaussian process model is infeasible, we cannot compare the approximation
quality of both approaches. However, as we reproduced the implementation of SDVI in Up1x exactly,
a runtime comparison between the approaches is sufficient.

4.3 Reversible Jump / Involutive MCMC DCC

Reversible Jump MCMC (RJIMCMC) algorithms [17], which belong to the class of involutive MCMC
algorithms [38], were developed for models that can be decomposed into enumerable sub-models of
varying dimension. Metropolis-Hastings moves are designed to switch between these sub-models
during inference. As suggested by the name, these jumps have to be designed in a reversible manner:
for each jump move there has to be a move which reverses it, establishing a bijection. In this section,
we describe our novel DCC algorithm based on the RIMCMC principle.

This approach is best explained by example. In one of the earliest formulations Richardson and
Green [44] designed reversible jumps for a Gaussian mixture model (GMM) with unknown number
of components. Mathematically, we model the number of components K ~ Poisson(2) + 1 and the
membership probability as w ~ Dirichlet(§). Data is modelled with z; ~ Categorical(w) and
x; ~ Normal(y,, o2,), where yi ~ Normal(0,x~?) and o ~ InverseGamma(a, f3) are the center and
deviation around the center for component k. We have implemented this model in Upix as shown
in Figure 2. For this model, the jumps are given by 1) splitting one component into two components
and 2) merging two components to one component. These jumps are designed to be inverses of each
another on an extended variable space. The RIMCMC inference algorithm for the GMM alternates
between the reversible jumps, changing the number of components, and well-known Gibbs moves
to draw samples from the posterior of each sub-model. These Gibbs moves are readily implemented
with the MCMC programmable inference constructs provided by Upix.

At first, we implemented inference for the GMM following the MCMC-DCC approach as described
in Section 4.1 which eliminates the need to jump between sub-models as every SLP corresponds to
a sub-model with a certain fixed number of components. However, we were not able to accurately
estimate the normalisation constants needed to combine the results with importance sampling
methods as proposed by Zhou et al. [55] or with other common approaches for marginal likelihood
estimation like Chib’s method or sequential Monte Carlo methods [26].

Subsequently, we realised that for the combine step to be sound in DCC, the absolute normalisa-
tion constants of each SLP are not required. Instead, it is sufficient to weigh an SLP only relative to
the other SLPs. Even more, this relative estimation can be built around reversible jumps. To see
this, let D be the observed data and let p(.|i, D) denote the d; dimensional posterior of sub-model i
and k(j, y|i, x) a reversible jump kernel that moves from sub-model i to sub-model j. We observe
following relationship between normalisation constants p(i|D) and p(j|D):

Zie= [, [, K10 p(x1i D) dxdy =
R JR4i
1
k(j,yli,x) p(i, x| D) dxdy =
57 fou L K1) G x1D) dxdy

1 N PUID)
= k(i,x|j, Y| D) dydx = —= Liei
iz o L, K pU D) dud = IRz
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Above, the second to last equation follows from the fact that involutive MCMC kernels such as
RJMCMC kernels satisfy detailed balance [38]. This gives rise to an infinite system of equations

Zi = p(i| D) =sz1“’, ieN, jeN. (1)
This system can be approximated by only taking into account the SLPs for which inference was
performed in DCC. The system is under-determined, so we may arbitrarily set Z, = 1. The
quantities Z;; may be approximated through sampling as follows: First, take x ~ p(.|i, D), where
the posterior p(.|i, D) is approximated by running inference for SLP;. Then, we simulate reversible
jumps (j,y) ~ k(.]i, x) and take Z i as the empirical marginal distribution over j. Crucially, this
estimation can often be JIT-compiled as both SLP; and SLP; have static support structure.

To ease programmable inference, a language for declaring involutions and computing acceptance
rates of reversible jumps via automatic differentiation was implemented following Cusumano-
Towner et al. [11]. The estimate_log_weight method builds the system of equation (1) based on
the user-provided reversible jumps and solves it numerically to estimate the SLP weights.

To evaluate our approach, we compare against the described RIMCMC algorithm for the GMM
implemented in Gen adapted from Matheos et al. [33]. Running 8 MCMC chains of length 25000 in
a multi-threaded fashion takes 95 seconds (with ~ 13 seconds Julia JIT-compile time). This results
in an approximation to the posterior with error Lo, (F,F) = max |[F(k) — F(k)| ~ 0.00759, where F
is the ground truth cumulative distribution function over the number of components estimated by
collecting a total of 107 samples and F is the approximation obtained by the 8 - 25000 samples. In
this run the highest number of components encountered was 9. Our approach takes 91 seconds
(= 47 seconds compile-time) to run 8 chains and 25000 seconds for 11 SLPs corresponding to
component numbers 1 to 11. For this, we customised update_active_slps to run inference on
SLPs ordered by the compontent count and SLPy,; is made active only if the split probability of
SLPy exceeds the threshold 0.01. In approximately the same time, Urix produces 10 times more
samples compared to Gen, which results in a better estimate Loo(l:“, F) ~ 0.00401.

4.4 Sequential Monte Carlo DCC

Although the sequential Monte Carlo (SMC) [10] inference algorithm class can be quite naturally
instantiated as a DCC algorithm, to the best of our knowledge, we are the first to do so. Different
to MCMC and VI, SMC algorithms propagate a set of samples — so-called particles — once through
the probabilistic program. Observed data is added to the inference process iteratively. After each
addition of data, the particles are re-weighted relative to their likelihood. Then, particles may be
resampled according to their weights effectively discarding low-probability particles and duplicating
high-probability particles. Optionally, a rejuvenation MCMC kernel may be applied to all particles
after resampling to make them more diverse. At the end, the set of weighted particles constitutes
an approximation to the posterior distribution of the model. As a convenient by-product SMC
algorithms also provide an estimate of the marginal likelihood Z.

Thus, an SMC-DCC algorithm is implemented in Upix as sketched in Listing 4, where we re-
use the marginal likelihood estimate from the inference run in the combine step. We enable the
user to easily specify the schedule with which data is introduced to the inference process in the
get_SMC_data_schedule method. For instance, this could be one data point at a time or a batch of
data points at a time. To run SMC efficiently, many probabilistic programming systems implement
machinery to incrementally execute the program and add data this way. A similar approach in
Urix would lead to a lot of compilation overhead as the log-probability density function would
have to be compiled for every data increment. Instead, we decided to always execute the full
probabilistic program, but pass a mask as argument that determines which data points contribute
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to the log-probability density. This way the density computation has to be compiled only once per
SLP in SMC. In addition to making the data schedule programmable, we also provide the option to
specify a rejuvenation MCMC kernel with the same constructs as in Section 4.1. We also provide
many options to customise the resampling scheme in SMC like the resampling method (multinomial,
stratified, and systematic) and resampling time (before or after rejuvenation).

Listing 4. Implementation sketch of Sequential Monte Carlo DCC in Upix.
class SequentialMonteCarloDCC(MonteCarloDCC):

def get_SMC_data_schedule(self, slp):

# provided by the user
def get_SMC_rejuvenation_regime(self, slp):

# provided by the user
def run_inference(self, slp, results):

# run SMC routine based on rejuvenation kernel and data schedule
def estimate_log_weight(self, slp, results):

# estimate log-weight with estimate from SMC inference run

To test this approach, we again consider the Gaussian Process model from Section 4.2, but with
slighlty different kernel grammar K ::= GE|PER|LIN|K + K|K X K, where GE is a gamma-exponential
primitive kernel. At the start we make the three primitive kernels active SLPs. On each of four
subsequent DCC iterations, we run inference for five active SLPs which are obtained by perturbing
the previous set of active SLPs with global random walk updates as in Listing 2. We use 100 SMC
particles, a HMC rejuvenation kernel, and we split the airline passenger data set in 10 sub-sets. On
a M2 Pro this takes around 7 minutes and 35 seconds to complete.

This example is based on Saad et al. [46], who designed an SMC approach with involutive MCMC
rejuvenation moves for time series structure discovery and implemented it in the Julia package
AutoGP. j1. We configured our Urrx-SMC-DCC instantiation to be as close to their implementation
as possible with the difference that we do not use involutive MCMC rejuvenation moves as our
approach does not move between sub-models during inference. On the same hardware, AutoGP. j1
with 100 particles takes around 8 minutes and 50 seconds to finish. In this time, the 100 particles are
propagated only once through the full model, changing the structure of the Gaussian process kernel
many times. In contrast, our approach propagates 100 particles through a total of 23 SLPs, keeping
the structure fixed. The former has the advantage of exploring more kernel structures, while the
latter performs inference and marginal likelihood estimation more accurately for a smaller set of
kernel structures.

This comparison serves only to put the runtime of our approach into perspective. Evaluating the
approximation quality of both approaches is difficult due to the infeasibility of computing a ground
truth and thus, beyond the scope of this paper. We refrain from comparing the approaches by
assessing prediction quality on a hold-out test set as others have done, because even if an approach
has better prediction quality this may not be due to better posterior approximations — the primary
goal of Bayesian inference.

4.5 Variable Elimination DCC

In the conquer step of DCC, we are not limited to approximate inference algorithms which we
have considered up until this point. In this section, we present a novel instantiation of the DCC
framework which performs inference for discrete models with stochastic support by exactly solving
the sub-models which have static structure.
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It is well known that discrete probabilistic models with a fixed finite number of random variables
can be solved exactly [22]. This can be achieved by naively enumerating the model support and
computing the marginal likelihood. However, as this becomes infeasible for larger models, more
sophisticated methods like Variable Elimination (VE) or Belief Propagation have to be used [22].
In variable elimination, the probability density function of a model is given in factorised form
p(X) = Hlk(zl fix(Xk), where Xi C X are subsets of variables. Typically, the factors have the
form of conditional probability tables, i.e. p(x|parents(x)). This representation allows the efficient
marginalisation of a variable x by building the factor product of all factors to which the variable x
belongs, and then summing out x. This new factor f"(X) = 2, [Ix. xex, fk (Xx) replaces all the
factors used in the product and gives rise to a new factorisation without x. This elimination process
can be repeated until only a set of query variables remains or until all variables are eliminated such
that the result of the computation is the normalisation constant.

We have implemented a DCC version of variable elimination in Upix as follows. In the method
get_query_variables, the user may specify query variables. As the efficiency of variable elim-
ination heavily depends on the elimination order, we enable the user to customise it with a
get_elimination_order method, but we also provide a strong default ordering. We have imple-
mented a JAX interpreter which automatically constructs the conditional probability table for each
variable in the sub-model, thus setting up the factorisation. By default, this is done one factor at a
time, which may cause a lot of compilation overhead. To remedy this, we give the user the option
to specify sets of variables for which the factors can be computed in one passin a get_factors
method. Finally, variable elimination is performed in run_inference for each SLP and we can use
the exact normalisation constant computed as a by-product as weight in estimate_log_weight.

To test the variable elimination DCC approach, we consider the urn model of Milch et al. [36].
In this model, we have an urn with an unknown number of balls N ~ Poisson(6) each of which
has equal prior probability of being black or white. We repeatedly draw a ball, observe its color
with 80% accuracy, and put it back. With posterior inference we aim to answer: Given that we
observed 5 white and 5 black balls, how many balls are inside the urn? As the number of balls
is unknown, the support structure of this model is stochastic and cannot be directly solved with
exact inference. With our Uprix implementation it takes 13 seconds to compute the factorisation
and the exact solution for 1 to 20 balls (64 seconds with unoptimised factor computation). In this
implementation, we customised SLP initialisation to be performed in order of the number of balls.
This gives a maximum absolute error of 1.315 - 107° to the true posterior probabilities mass function
over N computed analytically. For reference, producing 107 importance samples in BLOG [35, 54],
a system designed for such models, takes 27 seconds and yields an error of 5.260 - 1074,

5 Scaling Experiments

So far, we have demonstrated the capabilities of Upix only on consumer-grade hardware like the M2
pro CPU. In comparison to existing probabilistic inference implementations, we observed that Upix
enables faster inference which results in better approximations as summarised in Table 1. In this
section, we shift our attention to large-scale computational hardware and evaluate the capabilities
of Uprix on machines with up to 64 CPU cores and 8 GPU devices.

First, we note that DCC algorithms can be straightforwardly parallelised by running inference for
multiple SLPs in a multi-processing fashion on multiple CPU cores or multiple accelerator devices.
This parallelisation method is expected to scale perfectly for models which require the exploration
of many SLPs. Although this parallelisation method is supported in Urix, conducting an experiment
to evaluate it would offer limited value. Instead, we examine how inference algorithms executed
on individual SLPs may benefit from the use of multiple accelerators. Note that since models with
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Table 1. Comparison of DCC algorithms implemented in Upix modelled after baseline algorithms and executed
on consumer hardware (M2 Pro CPU).

Model Method Details Runtime Lo
Pedestrian NP-DHMC [28] 8 - 1000 samples 2m 01s 0.02372
Urix MCMC-DCC 6 - 8 - 25000 samples 25s  0.00133
GP SDVI [42] 10° step budget, 5 phases, 110 SLPs ~ 18m 20s -
Upix VI-DCC 10° step budget, 5 phases, 98 SLPs ~ 2m 24s -
GMM Gen [33] 8 - 25000 samples 1m 35s 0.00759
Urix RIMCMC-DCC 11 - 8 - 25000 samples 1m 31s  0.00401
GP AutoGP [46] 100 particles, propagated once 7m 35s =
Uprix SMC-DCC 100 particles, 23 SLPs 8m 50s -
Urn BLOG (Swift) [54] 107 importance samples 27s  5.3-1074
Urix VE-DCC 20 SLPs solved exactly 13s 1.3-107°

static support structure are also expressible in Upix and yield a single SLP, the experimental results
are likewise applicable to this class of models. Figure 7 shows the complete experiment results
which we discuss in detail in the following sections.

5.1 Scaling MCMC

In MCMC algorithms, each sample depends on the predecessor in the chain making them inherently
sequential. Parallelisation can only be achieved when running multiple, typically 2-4, long chains at
once. Recently, the many-short-chain approach has gained more attention [24, 49], where instead
of approximating the posterior with long auto-correlated chains, it is approximated with thousands
of short chains, sometimes using only their independent end-points. As MCMC algorithms are only
asymptotically correct, it remains an open question how short the chains may be [31, 32].

We test this approach in Upix by running MCMC-DCC for the Pedestrian model with up to
220 = 1048576 chains of 256 samples each and RIMCMC-DCC for the GMM model with up to
218 = 262 144 chains of 2028 samples each, using only their endpoints in the final approximation.
We ran DCC ten times with different RNG seeds and make the runs comparable by using a fixed
set of 8 SLPs. We show the L., distance to the ground truth posterior in Figure 7 a) and b) on the
bottom. As expected, the approximation quality improves with increasing number of chains.

On the top plots, we also report runtime measurements on various hardware. We observe close
to perfect scaling: doubling the number of chains doubles the runtime, doubling the number of CPU
cores / GPU devices halves the runtime. Due to the longer compile time, GPUs only outperform
CPUs when the number of chains exceeds 2!® = 65 536. Only these large workloads benefit form
using multiple GPUs. We note that the newer generation NVIDIA L40s GPUs compile JAX programs
faster than the A40 GPUs, but unfortunately, we ran into device communication issues for multiple
L40s devices and could not complete the experiments. We also report runtimes on CPU for the
NP-DHMC and RJMCMC Gen implementation after which our DCC algorithms were modelled.

5.2 Scaling Variational Inference

Although Variational Inference has been scaled up to very large datasets [19], running VI on
accelerators in an embarrassingly parallel way for smaller datasets has been less explored. At first
glance, the parameter L, which controls the number samples taken to estimate the ELBO gradient
in each step, seems like a good candidate for scaling: more accurate gradient estimates equals
faster convergence. While this is true, fast convergence to a particular local maximum is often
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less desirable than having higher variance gradient estimates which help escape bad local maxima.
We demonstrate this in Figure 8, where it can be seen that running VI eight times with L = 8 and
picking the best run finds a better maxima compared to running VI once with L = 64.

Motivated by this finding, we examine this multi-run VI approach at large scale in Figure 7 c).
In the lower plot, we show VI results for the Gaussian process SLP corresponding to kernel
(PER + RQ) X LIN, where we fix L = 8 and increase the number of parallel VI runs up to 2048. We
performed 10 experiment repetitions and visualise the best ELBO achieved as boxplots. Note that
in the VI run itself the ELBO is estimated with L = 8 samples, but for the plot we computed the
ELBOs more accurately with 10 000 samples. It can be seen that with increasing number of runs
better ELBOs are achieved more consistently.

As before, we measured the runtime of our multi-run SDVI approach with a fixed set of 8 SLPs
on various hardware, see the upper plot in Figure 7 c). The scaling is again close to perfect. Notably,
it is beneficial to use GPUs already for 2 parallel runs. For reference, we also measure the runtime
of the PyTorch SDVI implementation [42] on CPU. This implementation does not support multiple
parallel VI runs and does not implement the gradient estimate in vectorised fashion. Thus, we only
show data for single runs and 8 CPUs, because we found that increasing the number of CPUs does
not lower runtime. However, we reiterate that this SDVI implementation does support running
inference for multiple SLPs in parallel in multiple processes.

104 ©— AMD EPYC 9355 256GB g L 109 w
A100 80GB = 5
1001 ~ A L40s 48GB B e49f L1y o
v, &g WA o
o 2 SRR [ -
] ) bt A 3
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Fig. 8. ELBO curves for Variational Inference runs for Fig. 9. Cumulative size of factors versus inference
Gaussian Process SLP (PER+RQ) X LIN with various L. runtime of variable elimination for the Urn model.

5.3 Scaling Sequential Monte Carlo

It is a well-known fact that increasing the number of particles in SMC improves approximation
quality [10]. We confirmed this by running SMC 10 times for the Gaussian process SLP correspond-
ing to kernel (PER +RQ) X LIN for up to 2!° = 32 768 particles. As expected and shown in Figure 7 d),
the marginal likelihood (normalisation constant) estimates increase and exhibit less variance with
increasing number of particles.

The runtime of SMC-DCC measured for a fixed set of 8 SLPs scales close to perfectly again, as
can be seen on the top plot in Figure 7 d). GPUs are preferable to CPUs with number of particles
exceeding 2! = 4096. The runtime of AutoGP scales similarly to SMC-DCC in Upx on CPUs. We
have included these runtimes solely to have a reference for the scaling properties of Upix. Although
our SMC-DCC algorithm was inspired by AutoGP’s methodology, the reported runtimes should
not be interpreted as directly comparable, since the two approaches differ (see Section 4.4).

5.4 Scaling Variable Elimination

Variable elimination for discrete models is performed through repeated factor products. The product
of factor f; with variables X; and factor f, with variables X, is implemented in log-space as sum of
their tables given by arrays, where shared variables x € X; N X; are placed at the same axis and
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axes corresponding to variables x ¢ X; N X; are broadcasted. For models with high dimensional
support this summation involves large arrays which can be efficiently computed on GPUs.

However, we found that variable elimination, tested on the Urn model, is memory bound. As can
be seen in Figure 9, the size of the involved factors, and thus required memory, scales exponentially
with N - the number of balls in the urn. This leads to out-of-memory errors at N = 22 for the 48GB
A40 and L40s GPUs and at N = 23 for the 80GB A100 GPU. At these factor sizes, the computation
time on GPU still exceeds the runtime of a CPU. In principle, we estimate that we could push N up
to 24 or 25 by sharding the factors among multiple GPU devices or by unloading unused factors
from the devices. As the accuracy of the posterior approximation is already close to numerical
precision at N = 23, this would not significantly improve the inference quality and we leave such
experiments for future work.

6 Limitations
6.1 Exploding Number of SLPs

By design, Upix inherits the general limitations of the DCC approach. The DCC approach works
well when the total number of sub-models / SLPs is low or when the observed data makes it possible
to guide inference towards a small set of SLPs with high posterior mass. This was the case for all
models considered: for the Pedestrian model we can reject SLPs corresponding to a number of steps
greater than 6; for the GMM we can reject SLPs corresponding to a number of components greater
than 11; for the Gaussian Process model the number of kernel structures is large, but most of them
do not fit the data well; for the Urn model, we can enumerate all 20 relevant SLPs.

We briefly discuss a model for which the DCC approach fails. In statistical phylogenetic anal-
ysis [45], birth-death models provide a means to infer properties of the evolutionary tree of a
given species. e.g. the birth or death rate of lineages. Data is inherently partial, lacking information
about extinct lineages. Thus, it is the job of inference to consider many unobserved lineages and
evolutionary trees that may explain the partial observed data. In DCC, this leads to an exploding
number of SLPs, none of which can be easily rejected based on the partial observations.

6.2 Compilation Time

Uprx builds on the JIT-compilation machinery of JAX. Depending on model complexity, inference
algorithm complexity, and hardware, this leads to substantial runtime overhead. In Table 2, we
report our estimated compilation overhead for the evaluation in Section 4 on consumer hardware.
In our scaling experiments of Section 5, we showed that for GPUs the computation time exceeds
compile time only for large workloads for most models. Nevertheless, we demonstrated that our
method, including compilation, achieves between 7 and 720 times more computation within the
same time budget, compared to existing approaches. Furthermore, we showed that Upix enables
scaling of inference algorithms on GPUs to workloads that are impractically slow on CPUs and
existing approaches. Finally, future work on iterative compilation in JAX may further reduce
compilation overhead.

Table 2. Estimated compilation overhead as fraction of runtime for all considered models.

Pedestrian GP-VI GMM GP-SMC Urn
21% 14% 39% 13% 48%
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7 Related Work
7.1 Universal PPLs and Programmable Inference

With the release of Church, Goodman et al. [15] was the first to coin the term universal PPL.
Since then, many universal PPLs were developed including WebPPL [16], Anglican [50], Pyro [6],
and Turing [14]. The universal PPL Venture [30] and its successor Gen [12] are projects which
pioneered programmable inference. Upix adapts many established programmable inference ideas
which have been developed for MCMC [30], variational inference [4], sequential Monte Carlo [25],
and involutive MCMC [11]. It also supports the specification of variational distributions as guide
programs, an approach popularised by Pyro [6]. While some components of the inference machinery
in the aforementioned systems can be run on GPUs, none support compiling a full programmable
inference routine to accelerator hardware for models with stochastic support, such as UpIx.

7.2 Inference for Models with Stochastic Support Structure

Many inference algorithms, like light-weight Metropolis Hastings algorithm [53], do not require
assumptions about the support of the target model. This makes them general purpose, but also less
efficient. When we can put assumptions on the model, like finite dimensionality and differentiability,
general-purpose algorithms are outperformed by specialised algorithms like NUTS [20]. There are
efforts to extend these specialised algorithms to stochastic support models, e.g. non-parametric
HMC [28] or non-parametric involutive MCMC [29].

The Divide-Conquer-Combine (DCC) approach [55] provides a technique to run inference
algorithms, specialised for static support structures, on models specified in a universal PPL. This
approach is under-explored with only one extension to variational inference called SDVI [43]. As
the implementation of the original publication is closed source, there is only one open source
implementation of the DCC approach by Reichelt et al. [42] in Pyro [6] (which we compared against
in Sections 4 and 5) with a rudimentary translation to NumPyro [41]. Upix is the first system to
realise the DCC approach as a framework allowing the instantiations of many new DCC-based
inference algorithms.

7.3 Accelerated Inference in Probabilistic Programming Systems

Compiling inference algorithms designed for universal PPLs to accelerator hardware like GPUs
or TPUs is challenging. Urix achieves this compilation by building on the DCC approach, but
there also exist other techniques. To the best of our knowledge, other than Up1x, Lundén et al. [27]
presents the only approach capable of compiling a full inference routine for a universal PPL to
GPU. However, they solely focus on sequential Monte Carlo.

In general, GPU support is relatively limited in probabilistic programming. We highlight several
systems that provide GPU support but, unlike universal PPLs, achieve this by adopting more
restricted modelling languages. LibBi [37] is a language for Bayesian state-space modelling that fea-
tures an OpenMP and CUDA backend for their sequential Monte Carlo implementation. Augur [21]
is a probabilistic programming system that enables compilation of MCMC algorithms to CPU and
GPU. An OpenCL backend was developed for Stan in 2019 [9]. Systems with a JAX backend like
NumPyro [41], BlackJax [7], and TensorflowProbability [24], enable inference of finite dimensional
models with static support (i.e., no stochastic control flow or dynamic array shapes) on GPUs and
TPUs. Recently, ProbZelus, a reactive probabilistic programming langauge, was also equipped with
a JAX backend [2].

It is more common to use GPU acceleration in deep probabilistic programming where models
incorporate neural networks. For instance, to compute the log-probability density function, systems
like Edward [51] or Pyro [6] can dispatch the neural network computations to GPUs.
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8 Conclusion

We presented Upix, the first probabilistic programming system that realises the divide-conquer-
combine (DCC) approach as a programmable inference framework for universal PPLs. This system
enables not only the implementation of existing DCC algorithms, like the original DCC and SDVI,
but also the formulation of new DCC algorithms, as was demonstrated by introducing RIMCMC-
DCC, SMC-DCC, and VE-DCC. By building on the JAX infrastructure, JIT-compilation to CPUs,
GPUs, and TPUs was achieved. On a consumer-grade CPU, this resulted in 7 to 720 times more
computation within the same time budget, compared to prior methods, which substantially improves
approximation quality for challenging probabilistic models. Lastly, in an empirically evaluation
on machines up to 64 CPU cores and 8 GPU devices, we showed how inference algorithms can be
scaled in Upix to workloads that are impractically slow for CPUs and existing approaches.
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